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Resume. Based on three-dimensional equations of linearized elasticity theory for finite deformations of
elastic body and three-dimensional linearized Navier-Stokes equations for the liquid medium, the problem of
propagation of acoustic waves in preliminarily deformed compressible elastic layer in contact with a layer of
viscous compressible liquid has been formulated. A numerical study is conducted, dispersion curves are
constructed and dependencies of the phase velocities and attenuation coefficients modes to the thickness of layers
of elastic body and a viscous compressible liquid in a wide frequency range are determined. An effect of initial
stresses on phase-frequency spectrum of waves in the hydroelastic system is analyzed.
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Problem setting. The development of science and technology brings new increased
requirements for research in hydro elasticity and in particular to study wave propagation in
elastic bodies in contact with the liquid. There is a strong need for comprehensive consideration
of real solid and liquid media properties and on this basis adequate description of different
phenomena and mechanical effects that characterize dynamic processes in hydroelastic
waveguides.

Analysis of the known research results. The waves propagating along the contact
boundary of elastic layer and the layer of liquid are among thoroughly studied generalized basic
types of acoustic waves, such as Rayleigh, Stoneley Lyave and Lamb waves. Work reviews and
analysis of results obtained within classical elasticity theory and models of ideal compressible
liquid are given in [1]. However, considerable practical use of surface waves raises the problem
of taking into account real medium properties. Among these factors are the initial tensions and
viscosity of the liquid. Tasks examined and results obtained on the basis of the properties of
solids and liquids are given in [2, 3].

The purpose of the work. Explore the dispersion spectrum of wave process in a pre-
stressed compressible layer — layer of viscous compressible liquid system based on three-
dimensional linearized Navier-Stokes equations for the liquid medium and three-dimensional
linearized elasticity equations for finite deformation of solids in the most complex theoretical
as well as important applied aspect of the case, which covers long-wave and short-wave part of
the spectrum.

Formulation of the problem. In this paper, to study wave propagation in a liquid
layer — elastic layer system a model is involved that takes into account the initial deformation
of solids, together with a model of viscous compressible Newtonian liquid. It uses three-
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dimensional equations of linearized elasticity theory at finite deformations of solids and three-
dimensional linearized Navier-Stokes equations for the liquid at rest without taking into account
thermal effects. The approach chosen applies problem formulation and the method based on the
use of representations of general solutions to the equations of motion of an elastic compressible
body and a viscous compressible liquid proposed in works [4 — 10].

In the case of homogeneous stress-tension state coefficients in the equations for compressible
elastic bodies are constants values that provide a representation of general solutions. For flat
case under consideration, the general solution will have the form [4 — 10]
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This problem has the following dynamic

Ql Zp= 0’ Zz =0 — QZ Zp= 0’ Ql Zz——hz 0; Q2 22:—h2 :O’
Pl 22=h1 = 0; P2 22=h1 = 0 (6)
and kinematic
aou ou
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boundary conditions. Here are the following notation: u, — the components of the elastic body
travel vector; 1, — extension of the elastic layer in the directions of coordinate axes; a; and
u; — values which are determined from equations of state and depend on the type of elastic
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potential [11]; &,° — initial stresses (s. :1—30“); p — elastic layer matter density; v, —

A
the components of liquid velocity vector; v and " — kinematic and dynamic viscosity of the
liquid; p,and a, — the density and speed of sound in a liquid at rest. Q; and P; — the

components of the stress in a solid and a liquid.
Then parameters, characterizing the propagation of waves, are sought in the class of
traveling waves, presented as

x;=X,(z,)expli(kz, — at)], j=13, (8)

where k (k=pg+iy) — wave number; y — wave attenuation coefficient; @ — circular
frequency.

Note that chosen for this research class of harmonic waves, being the most simple and
convenient in theoretical studies, does not limit the generality of the results obtained as a linear
wave of arbitrary shape is known to be represented by a set of harmonic components. Then two
Sturm-Liouville problems on eigenvalues for equations of travel of an elastic body and liquid
are considered. On solving the equations their respective functions are found. After substitution
of the solutions into boundary conditions (6) — (7) we get a system of linear homogeneous
algebraic equations with reference to integration constants. Based on the conditions of a
nontrivial solution existence, and equating the system determinant to zero, we get the dispersion
equation

det =0,I,m=18, (9)

Cim (C’y1aij 1 M ’Si(i) 1P 4, i oh [ c,,oh, | Cs]

where ¢ is the phase velocity of waves in hydroelastic system; c_ (c? = u/p)— shear wave
velocity in the elastic body material; x — shear modulus; h,— thickness layer of the viscous
liquid; h,— thickness of the elastic layer.

As is known in unlimited compressible elastic body both longitudinal and shear waves
exist. In an ideal compressible liquid medium only longitudinal waves spread. Longitudinal as
well as and shear waves exist in a viscous compressible liquid. These waves interact in free
boundary surfaces, as well as in media contact surfaces, generating a complex wave field in
hydroelastic system. Waves, thus created, spread with dispersion. Their phase velocities are in
some way dependent on the frequency.

Note that the resulting dispersion equation (9) does not depend on the form of elastic
potential. It is the most general and it is possible to obtain a number of partial cases considered
in[2, 12 - 14].

Analysis of numerical results. Subsequently the dispersion equation (9) was solved
numerically. Herewith the calculations were made for a system of organic glass — water, which

is characterized by the following parameters: resilient layer p =1160kg/m3, x =186-10° Pa;
liquid layer p, =1000 Kg/m3, a, =14595m/s, &, = a,/c, =11526, Z =0,001.

Murnahan form of three-invariant potential was used in numerical realization of a
problem for organic glass [11]. With this in view, Murnahan constants for organic glass through

which equation values of a; state and y; state, were defined as follows [11, 12]: a= —-391-10°

Pa; b=-7,02-10°Pa; c=-1,41-10°Pa,
The results of calculations are presented in Figures 1 — 8.
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For the elastic layer which does not interact with the liquid Fig. 1 shows dependencies
of dimensionless values of phase velocities of Lamb waves € (€ =c/c,) on dimensionless

thickness of the elastic layer (frequency) h, (h, =wh, /c,) in the absence of initial
deformations. Numbers n, indicate antisymmetric modes and n, — symmetrical modes
accordingly.

Fig. 2 shows the dispersion curves for hydroelastic waveguide showing the
dependencies of dimensionless values of phase velocities modes € on dimensionless value of
viscous liquid thickness h: (h, = wh, /c, ) for the elastic layer with a thickness equal to h, =10,
and in the absence of initial deformations.

Curves for hydroelastic waveguide showing the dependencies of dimensionless values

of mode attenuation coefficients y on dimensionless thickness of viscous liquid h, elastic

layer with a thickness that equals hz =10 also in the absence of initial deformations, shown in
Fig. 3—4.

The nature of the impact of preliminary tension (EMO =0,004) on the phase velocities
modes in an elastic layer that interacts with a layer of viscous liquid graphics is illustrated by
Fig. 5 — 6, showing the dependencies of the change in the relative phase velocities

c, (c, = ©“=c. c, — phase velocities of modes in hydroelastic system of pre-stressed layer,
C

¢ — phase velocities of modes in hydroelastic system in the absence of initial deformations) on
the thickness of viscous liquid layer for the first 11 modes. These Figures show hydroelastic

waveguide dispersion curves, with its elastic layer thickness equal to h, =10.

The nature of the impact of preliminary tension (&,,° =0,004) on the attenuation

coefficients of modes in an elastic layer that interacts with a layer of viscous liquid is illustrated
on diagrams in Fig. 7 — 9, which shows attenuation coefficient relative value changes

Vo~

dependencies y, (7, = 4 , 7, — mode attenuation coefficients in hydroelastic system with

pre-stressed layer; y —mode attenuation coefficients in hydroelastic system in the absence of
initial deformations) on the viscous liquid thickness for the first 11 modes. These Figures show
curves for hydroelastic waveguide with a thick elastic layer, whose thickness is hy =10

Research results. From the graphs presented in Fig. 1, it follows that the speed of zero
antisymmetric Lamb mode with increasing thickness of the elastic layer (frequency) h tends
to Rayleigh wave velocity ¢; (Cz =cg/c, =093356) from below, and of zero symmetrical
mode speed tends to Rayleigh wave velocity ¢; (Cy =093356 ) from above. Speeds of all
higher Lamb modes with increasing thickness of the elastic layer (frequency) tend to shear wave
velocity in the material of the elastic bodyc; .

Charts for hydroelastic systems, which are shown in Fig. 2, in the case of thick elastic
layer with h, =10 show that with increasing thickness of the layer of viscous compressible
liquid zero antisymmetric mode velocity tends to Stoneley wave velocity
Cy (T4 =g /cs =0,7691), and zero symmetrical mode velocity tends to Rayleigh wave velocity
Cr (Cg =093356 ). By increasing the thickness of the liquid layer the first antisymmetric mode
speed tends to wave velocity € =11286 , the value of which is less than the speed of sound in a
liquid &, (a, =11526 ). Phase velocities of all other higher modes tend to the speed of sound

in a liquid medium a&,.
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Figure 1. Dependencies of dimensionless phase
velocities of Lamb normal waves on the
dimensionless thickness of elastic layer in
absence of the initial stresses
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Figure 3. Dependencies of dimensionless
attenuation coefficients of modes 0,051, 15.2,
and 24 on the dimensionless thickness of layer

of viscous compressible liquid in absence of the
initial stresses
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Figure 2. Dependencies of dimensionless phase
velocities of modes on the dimensionless thickness of
layer of viscous compressible liquid in absence of the

initial stresses
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Figure 4. Dependencies of dimensionless attenuation
coefficients of modes 3 — 7 on the dimensionless
thickness of layer of viscous compressible liquid in
absence of the initial stresses

Chzirts in Fig. 2 show that in hydroelastic waveguide with an elastic layer of a given

thickness h, with increasing thickness of the liquid layer h; higher modes velocities tend to
the speed of sound in the liquid, which for the considered hydroelastic systems with selected
mechanical parameters is greater than shear wave velocity in solid material (a, > C;).

From the graphs presented in Fig. 3 — 4, it follows, that liquid layers of a certain
thickness and certain frequencies, for which mode attenuation coefficients take minimum as
well as maximum value, exist for all modes. However, for modes 3 — 7 generated by a liquid
medium, there are not only certain frequencies, but also the frequency range in which the modes
spread with both the smallest and the biggest fading.
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Figure 5. Dependencies of relative changes of
phase velocities of modes 0, 051, and 15 on
the dimensionless thickness of layer of viscous
compressible liquid in presence of the initial
stretching
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Figure 6. Dependencies of relative changes of
phase velocities of modes 25,25, 3—7 on the
dimensionless thickness of layer of viscous
compressible liquid in presence of the initial
stretching
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Wave propagation in the pre-deformed compressible elastic layer interacting with a layer of viscous compressible liquid

From the charts shown in Fig. 5 — 6, it follows that the initial tension of elastic layer
causes an increase in phase velocities of zero and first antisymmetric and symmetric modes.
Speeds of all higher modes 3 — 7, generated by a layer of liquid in the vicinity of the frequencies
of their origin have less velocities of relevant modes in a layer without initial stresses. The
impact of the initial tension on the phase velocities of all modes with increasing thickness of
the liquid is reduced. It is easy to see that starting with the second mode and onwards on all
subsequent there are certain liquid layer thickness and frequencies at which the pre-deformation
does not affect their phase velocity. This qualitatively new pattern, which is absent in the case
of wave propagation in unbounded and semibounded bodies, was first discovered for the elastic
layer that does not interact with the liquid and is presented in work [12]. In the case of thick
elastic layer considered here every mode 3 — 7, generated by liquid, has three such frequencies.

We also note that from the charts in Fig. 7 and 8 imply the existence for all modes except

0, viscous liquid layers of a certain thickness and certain frequencies at which the pre-
deformation does not affect attenuation coefficients of these modes.

" ¥
\E IE
05/- 0.04 A
0 ) -3
0,005 V4 e 0,03 [F2s TR | 1
[ T g
0000 £ H""""--...____‘ 0.01 J | )
/1 — ) A ST
a T—— 0 \
-0,005 .0.01 N /_2
0,02 \ s =
0,010 — 0,03
0 2 4 6 8 10 12 14 16 18 K, 0 2 4 6 8 10 12 4 16 18 &

Figure 7. Dependencies of relative changes of
attenuation coefficients of modes 0, .05 and 1,
on the dimensionless thickness of layer of
viscous compressible liquid in presence of the
initial stretching

Figure 8. Dependencies of relative changes of
attenuation coefficients of modes 14,2, .25 and
3 — 7 on the dimensionless thickness of layer of
viscous compressible liquid in presence of the

initial stretching

Note that the chosen approach, results obtained and identified patterns of mode
dispersion spectrum allow for wave processes to set limits of using the models based on
different versions of small initial deformations theory as well as perfect liquid model. The
results can also be used in ultrasonic non-destructive method of determining the stresses in the
surface layers of materials [15] as well as in areas such as seismology, seismic prospecting
etc. [11]

Conclusions. Within the framework of the three-dimensional equations of the linearized
elasticity theory of finite deformations for the elastic body and three-dimensional linearized
Navier-Stokes equations for a viscous liquid of the problem of propagation of acoustic waves
in a pre-deformed compressible elastic layer, that interacts with a layer of viscous compressible
liquid, was presented. The influence of the initial deformation, the thicknesses of the layers of
the elastic body and liquid on the phase velocities and the attenuation coefficients of modes
were analyzed. The dispersion curves for the modes in a wide range of frequencies were given.
For hydroelastic system it was shown, that with increast of the thickness layer of viscous liquid
the velocity of zero antisymmetric mode tends to the Stoneley wave velocity and velocity of
zero symmetric mode tends to the Rayleigh wave velocity. By increasing of the thickness of
the liquid layer, the velocity of the first antisymmetric mode tends to the wave velocity, the
value of which is less than the velocity of sound in the liquid. The phase velocities of all other
higher modes tends to the velocity of sound in the liquid. It was determined that the initial
tension of the elastic layer leads to the increasing the phase velocities of zero and first
antisymmetric and symmetric modes. The velocities of all higher modes which were generated
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by a layer of liquid in the vicinity of the frequency of their origin are less than relevant velocities
in a layer without initial stresses. The effect of the initial tension on the phase velocities of all
modes decreases with the increase of layer thickness of the liquid. It was determined that for
all the modes, beginning with the second, there exist thicknesses the liquid layer and the certain
frequencies, at which the initial tension of the elastic layer has no effect on their phase velocities
and attenuation coefficients. It was shown that in the case of thick elastic layer every mode that
was generated by the liquid has three such frequencies. An approach developed and the results
obtained allow to establish for the wave processes the limits applicability of the models based
on different versions of the theory of small initial deformations, as well the model of an ideal
liquid. The results can be well used in the ultrasonic non-destructive method determination of
stresses in near-the-surface layers of materials as well as in areas such as seismology, seismic,
etc.
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VJIK 539.

MOIIUPEHHS XBUJIb Y HONEPEJIHHO JE®POPMOBAHOMY
CTUCJIUBOMY MPYKHOMY HIAPI, IKUH B3AEMO/IE 3 IIIAPOM
B'SI3KOI CTUCJIMBOI PIIUHU

Ouaexkcanap barno

Incmumym mexanixu im. C.I1. Tumowenxka HAH Ykpainu, Kuis, Yxpaina

Pe3tome. Ha ocnogi mpugumipHux pieHsaHb NiHeapu308aHoi meopii npys*CHOCMI CKiHUeHHUX Oeghopmayill
OJIA NPYIACHO20 MiNa Ma MpUsUMIpHUX TiHeapusosanux pieHanb Has'e-Cmokca ons piokoeo cepedosuya 0ano
NOCMAHOBKY 3a0aui Npo NOWUPEHHS AKYCMUYHUX X8Ub Y HONEPeOHbO 0e(OpMOBAHOMY CIIUCTUBOMY NPYHCHOMY
wapi, wo KOHMaxkmye 3 wapom 6'sa3xoi cmuciugoi piounu. Ilpogedeno uucenvre 0ocaiodicentss, nooyooeaHo
OUCNePCIliHI KPUBI, 6CMAHOBIEHO 3AJeHCHOCMI (a308ux WeEUoOKocmel ma Koe@iyieHmie 32aCanHs Moo0 6i0
MOBWUHU WAPIE NPYICHO20 MINA i 8'A3K0i cmucaugoi piounu y wupoxomy dianasoui yacmom. IIpoananizosano
BNIIUB NOUAMKOBUX HANPYIICEHb HA YACMOMHO-ha308Utl CHEKMpP X6Ulb y 2iOPORPYICHIT cUCmeMI.

Kniouosi cnosa: npysicnuii cmuciusuil wap, wap 8'a3Koi cmucaugoi piounu, nouamxosi HanpylceHus,

2APMOHIYUHI XEUJIL.
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