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Summary. Simple accurate formulas for the natural frequencies of circular cylindrical shells are
presented for modes in which transverse deflection dominates. Based on the Donnell-Mushtari thin shell theory
the equations of motion of the circular cylindrical shell are introduced, using series expansion for axial coordinate
and Fourier series for the circumferential direction, a simple explicit solution is obtained. Also, the influence of
deformation component is investigated, it is shown that it can be neglected. Good agreement with experimental
data and FEM is shown. The advantage of a current approach over the existing formulas is simplicity in

programming.
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Mean radius; Shell thickness; Shell length;
Density of shell material; Young's modulus; Poisson ratio;

Axial and circumferential normal forces;

Axial and circumferential bending forces;

Tangential force;
Axial and circumferential moments;

Tangential moment;
Axial, circumferential and radial displacements;

Median surface strains;

Bending strains;

Wave number in circumferential and axial direction
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An exact series solution for free vibration of cylindrical shell with arbitrary boundary conditions

Introduction. Cylindrical shells are the most investigated type of shells for which there
are extensive experimental data and many analytical solutions have been obtained. To solve the

shell equations expansion in Fourier series Zcos(n¢)+sin(n(p) along the circumferential

n

coordinate ¢ is usually used, and then various methods for solving the obtained ordinary
differential equation of the 8™ degree is suggested. Nowadays, a large number of analytical and
numerical methods for solving the problem of free and forced vibrations of an isotropic and
composite cylindrical shell have been proposed: exact analytical solutions [1], the Rayleigh-
Ritz method [2], the Bubnov-Galerkin method [3, 4], the domain decomposition approach [5],
wave propagation method [6].

At the same time, the rapid development of universal computer programs based on the
finite element method (FEM) raises the question of the need for further analytical studies. The
problem with analytical methods lies in the fact that they aren’t simple in realization, in proving
their accuracy and further applications[1, 5]. On other hand, FEM solution is also difficult to
analyze, it does not provide the clear engineering understanding of the range of natural
frequencies and shape of natural forms. From an engineering point of view, the existence of
simple formulas for estimating the natural frequencies of vibration is essential: firstly, for
solving the problems of shell dynamic analysis [7], and secondly for testing and analyzing
problems solved using FEM. The presence of such formulas also makes it possible to quickly
estimate the frequency spectrum of a structure and, if necessary, carry out a refined calculation
using an FEM.

The greatest interest in "engineering formulas” was in the 60-70s, when the first
approximation expressions were proposed on the basis of the Bubnov-Galerkin method [3, 4].
Perhaps the best engineering estimates with the help of V. Vlasov's hypotheses and variational
principles are obtained in the book of Kan [8]. The disadvantage of his solution is the incorrect
application of hypotheses, as well as the absence of dependencies for all conditions of
supporting the shell. Recent work in this area can be noted for membrane approximation [1],
and a comparative analysis of formulas [9]. It should be noted that accurate formulas without
any hypotheses and assumptions have a practical value if they are rather simple and
understandably written.

The derivation of simple and accurate formulas for the natural frequencies of a
cylindrical shell for various boundary conditions, including elastically supported edges, written
explicitly is the main goal of this paper. The effect of the deformation component on natural
frequencies is also analyzed and a comparison with the experimental data and the results of
other researchers is given.

Equations of motion. Initial system of dynamic equations for the thin shell:

ON, oL

—+—+phli=0, 1a
ox Rog p (La)
oN
—? +@+Q—¢’+phvzo, (1b)
Rdp ox R
d N
&+—Q¢——¢+ph\7\'/=0, (1c)
X Rdp R
oM, M
@ W%
_ Lo 1d
R Rop  ox (1d)
oM, oM
=t (1e)
X  Rop

Inner forces are connected with deformations using physical equations:
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Ny = —Hle, + sy, (2a)
Ny =—H ey +u2,), (2b)
L =-Geyph, (2c)
My =-H8ry +u2,), 2d)
M,y = ~H3lz, + ) (2¢)
Ho
My :_T(l_fu)ZX(p’ (2f)
S Eh h?
Here we used notifications: H = s 0= —.
1-u 12
Geometrical equations combine displacements with strains:
ou
€x = &1 (3a)
. 1 ov N W ab
» Rop R’ (30)
. 1 ou N ov 3
= — 7’ C
" Rop ox (3¢)
ow
ro=-2, (3d)
ow . v 3
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Bending strains depend on displacements:
Without deformation component With deformation component
0°w 0°w
== = (4a)
OX OX
ov a°w w a%w
Xp = - , Xp == 5~ 55 4b
? R%0¢p RZ%0¢? 7 R%Z R23p? (4b)
oV 20°w Yy = ov. ou 20%w (4c)
£x0 " Rox ~ Rogox’ *? " Rox R23p RO@OX

The system of equations given above is sufficient for solving the problem of free
vibration of a cylindrical shell.

Numerical solution. Consider a numerical procedure for solving eighth-order
differential equation, which follows from the governing Egs. (1)—(4). This solution is the most
accurate as it does not use essential simplifications at the stage of the problem statement. As
the initial unknowns we use the expansions of eight parameters in trigonometric series, namely:
the longitudinal displacement u(x, ¢,t), tangential displacement v(x,¢,t), radial displacement

w(x, p,t), rotation angle 7x(X,(0,t), axial stress resultant NX(X,(p,t), shearing stress resultant

L(x, @, 1), transverse stress resultant QX(X, (D,I), and couple M X(X,(/),t).
From Egs.(1a-1d)

=- -ph—, (5a)
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— = — ph——, 5b
OX Rop R P ot (50)
Q__Qp No_ 0w (50)
OX Rop R a2’
oM, My,
™ = Qx Rop | (5d)
From Eqgs.(2a), (2b) and (3a)
a_u:_w (5€)
OX Eh '
From Eqgs.(2c) and (3c)
N _, lon L Lo i
ox ¥ Roép hG Rag' S
From Eq. (3d):
ow
&—_VX’ (59)
From Egs. (4a), (3d) and (2d,2e):
M, — uM
Tx = gy =X 00 (5h)

ox Ehs
The quantities N(p , Q(p, M o and Mx(p, which can be expressed through the accepted

unknown parameters, appear in Egs. (5). We obtain the expression for N(/, by excluding ¢,
from the physical equations for forces (2a-2d):

Eh( ov
N(pzyNX—gwEhzny—?(%+WJ. (6a)
The expression for M, entering this equation is written according to the physical

equation (2e) and, with the account of the expression for 7, (4b), has the following form:

Ehs( ov  o%w
My =uMy = 2pENS = My ——=| ————1, (6b)
RS (09 o¢
2
Ehs 0w
Mg = My = 2,ENS = My + —| W+ — |. (6b")
R op

Here and below equations with «’» denote accounting for deformation component.
Eq. (2f) serves for the determination of I\/qu,. By substituting the expression for x,,
(4c) into this equation, we have:

_ H@-u)( v 20°w) HS(-p) Lo Ll o 60

P 2R | 0x  Ogdx 2R (hG Rdop d¢)
w, - HOQ-wfov au 20°w) Hol-p)(L 2au ,on) o
xe 2R |ox Rdp Ogix 2R \hG Rop op ) ¢

The fifth equilibrium equation (1e) serves to determine Q(p:
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M, oM
1% XQ
=—4+—" 6d
Q0 Rop  ox (6d)

The unknown functions are written in the following way:

N (x,0,t)=n (x)cos(ng)sin(wt), (7a)
L(x, @,t) = 1(x)sin(ne)sin(at), (7b)
Q (x,p,t)=q_(x)cos(ng)sin(at), (7¢)
M (X, p,t)= imx (x)cos(ng)sin(at), (7d)
u(x,@,t)= ;u(x)cos(n(p)sin (wt), (7e)
v(x,,1) = ;v(x)sin(n(p)sin(a)t), (7f)
w(x, o, t) = ;W(x)cos(n(p)sin (wt), (79)
7x0.t) = 27 (Wcos(ng)sin(ot). (7h)
We write a system of eight ordinary deferential equations in terms of main variables:
d”dLX(X) - i)~ 020, (8a)
X «(X) n n? n n? —
day(x) ) ny(x) n?s n Q2m 1 n?(n? -1
dx—(anz—yJ R —R3mx(x)+[R+ R2 JV(X)+{R—QZ+RJ3(1+—;J))JW(X)’ (8c)
dm,(x) n 1 n? n?
dx _EI(X) QX(X) E(1+ﬂ)R U(X)+ (1+,U)R 7x(x)’ (8d)
2
dl;f(x) L Rﬂ ne(x)+ ,U%V(X)-i— y%w(x), (8e)
dv(x) _,l+p 0y N
o " 2 - 1(x) = u(x), (8f)
w10, )
2 2
) A (1) D) ). @)

Here we used notation: Q2 = 2 pER. The solution of Egs. (8) can be easily found by
series expansion, i.a. assuming that solution is:
N, (X)=n, +Cyy - X+Cpp - X2 +Cpq - x3 +...
9)

7x(X)= 740 +Cay - X+Cgy - X* +Cgg - X" +...

C1,Cyy...Cqy,Cg3 — constants defined from Egs. (9). We can use only several first

terms in solution (9), for example accounting for coefficients of expansion x°, x!, x2, x® gives a

reliable accuracy. The coefficient matrix for x° is matrix of ones, and for x*:
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0 % 0 0 _q? 0 0 0
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_R*u—on? 0 0 _n% 0 (Q%5+R)n Q'R+ QR - —R%u+on* —R?) 0
R® R® R? 1+ u)R?
1 2 2
0 oy o 20 0 0 n
R 2 1+ w)R @+ wR
2
a1 o o0 0 0 AN lad 0
R R R
201
0 20+ p) 0 0 _n 0 0 0
R R
1
0 0 0 0 0 0 0 =
) R
2
0 o o -#-1 0 #n a0 0
R R R

The proposed solution is easily programmed using the method of initial parameters. In
this case, the shell is divided into small sections, which makes it possible not to increase the
number of terms in the polynomial expansion (9). To complete the formulation of the problem,
it is also necessary to address the boundary conditions.

Boundary conditions. At each edge of the shell, one of 16 types of homogeneous
boundary conditions can be specified, they are determined by all possible combinations of the
following four equations:

oM

w=0 or Qu+—2=0, (10a)
op
u=0 orNy =0, (10c)
1
v=0 O L~ =My, =0. (10d)

From Eq.(10) boundary conditions for an elastically restrained shell can be easily
obtained:
oM

Woky =Qy +—2, (11a)
op

rx -k, =My, (11b)

v-kV=L—%MX¢,. (11d)

Here ky, ky, ky, K, are axial, circumferential, radial, rotational spring stiffnesses.

Note that the most common boundary conditions are the simple support (the Navier
boundary condition):

w=0,M,=0, N,=0, v=0. (12a)
Clamped edge:
w=0,7y=0,u=0,v=0. (12b)
Free edge:
My, 1
+ :O, M :0 N :0, —_— =0. 12
Qx ” X X L—=My, =0 (12c)

B et e et aataar et en ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (89), 2018




Yaroslav Dubyk, Igor Orynyak, Oleksii Ishchenko

oM
To use Eg.(19a) and (19d), the boundary conditions Q, + aW:O and

%
L —;M ., =0 should be rewritten in terms of the main variables:
O (HS@—p)( L 10du oy
+—| | =+ —=—-2"">||=0,
Qx 6(0( 2R (hG Rop ~ op (132)
L—M LJFia_u_z% =0. (13b)
2R? hG Rogp op

Thus, we can use Eq.(13a) and (13b) directly in our numeric scheme.

Results and discussion. To illustrate how the frequency equation agrees with reality,
its results are compared with experimental data[10]. The results of comparison are shown in
Table 1, natural frequencies according to exact formulas of Xing[1], Smith[11] and Cammalleri
[12], are also present. It should be noted that our results are obtain for two options: with
deformation component and without it, the differences between them is negligible, thus only
one value is present in Table 1. The obtained results allow us to state that our formula is in good
agreement with the experimental data, as well as with other exact solutions, such as Xing [1],
Smith [11] and Cammalleri [12]. Note, that Cammalleri [12] approach is less accurate, as far as
it has some simplifying assumptions. The natural frequencies calculated using ANSYS are also
presented, the results of which also converge well.

Table 1

Natural frequencies of a clamped shell:
I1=305mm, R=76mm, h=0.254mm, E=207GPa, p=7833kg/m* u=0.3

m [N 2 3 4 5 6 7
Experiment[10] — 1025 700 559 525 587
Present 1923 1157 765 578 535 596

1 Xing et al[1] 1917 1154 764 580 538 598
Smith[11] 1918 1145 765 580 538 597
Cammalleri[12] 2017 1192 772 564 501 548
ANSYS 1928 1163 770 584 542 607
Experiment[10] — — 1620 1210 980 838
Present 3920 2546 1757 1289 1023 907

5 Xing et al[1] 3903 2537 1752 1287 1022 907
Smith[11] 3905 2538 1753 1287 1022 907
Cammalleri[12] 4033 2614 1776 1274 980 839
ANSYS 3932 2560 1772 1304 1037 924
Experiment[10] — — — — 1650 1395
Present 5874 4071 2931 2198 1724 1434

3 | Xingetal[1] 5841 4052 2920 2191 1720 1431
Smith[11] 5844 4054 2921 2192 1720 1431
Cammalleri[12] 5669 4011 2892 2146 1651 1335
ANSYS 5893 4097 2959 2227 1752 1462
Experiment[10] — — — — — 1960
Present 7350 5475 4122 3180 2527 2083

4 |-Xingetal[1] 7299 5444 4102 3167 2518 2077
Smith[11] 7303 5447 4104 3168 2516 2076
Cammalleri[12] 6834 5205 3960 3052 2400 1940
ANSYS 7370 5512 4166 3227 2574 2130
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Fig. 1 and Fig. 2 show a comparison of our exact solution for cylindrical shells with
experimental data[13]. Fig. 1 shows the frequency spectra for the supported shell, and in the
Fig. 2 for the shell with a free edge. Also on Fig. 1 and Fig. 2 there are results calculated from
the exact solution of the Soedel[14]. The agreement between present solution, experimental
data and results of other researchers is obvious. A more complicated type of boundary
conditions is presented in Table 2, i.e. one edge of the shell has elastic support, and the other
edge is clamped. According to Eq.(11) when k.=k,= k.=k,=0, we have clamped-free boundary
conditions. Analysis of Table 2 shows than natural frequencies monotonically increase when
the stiffness changes from 0 to 10e8.
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Figure 1. Natural frequencies of simply supported cylindrical shell: 1=6105.m, R=242,3mm,
h=0,648mm, E=68,91Tla, p=2714,5x2/nm3, u=0,315; experimental data[13] (o) m=1, (o) m=2, (0) m = 3;
exact solution ; =s===sseess Soedel formula[14]
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Figure 2. Natural frequencies of free edge cylindrical shell: 1=638mm, R=242,3ym, h=0,6481m,
E=68,9/Tla, p=27145keln®; experimental data[13] (o) m=1, (¢) m=2, (A) m=3; exact solution ;
----------- Soedel formula[14]
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Table 2

Natural frequencies for a clamped—elastically supported shell:
[=1.25m, R=0.25m, h=0.008m, E=210GPa, p=7800kg/m* u=0.3, ky=ks=k,=0

Mode

kw/ H=0 kw/ H=0.01 kw/ H=0.1 kw/ H=1 kw/ H=1e6 kw/ H=1e8
[15] | Pres. [15] | Pres. | [15] | Pres. | [15] | Pres. | [15] | Pres. [15] | Pres.

132.0 | 131.6 | 183.0 | 183.4 | 298.0 | 299.1 | 315.1 | 316.0 | 315.2 | 316.6 | 315.2 | 316.6

249.8 | 2478 | 278.2 | 278.2 | 310.1 | 310.8 | 339.9 | 340.7 | 343.4 | 3459 | 343.4 | 3459

262.8 | 263.0 | 279.8 | 279.9 | 365.0 | 365.5 | 473.3 | 476.1 | 491.4 | 492.1 | 491.4 | 492.1

AW |IN|F

377.0 | 374.8 | 404.1 | 402.9 | 490.4 | 490.8 | 491.6 | 492.0 | 501.1 | 505.4 | 501.1 | 505.4

Conclusions. The accurate numerical solution of free vibration frequencies of

cylindrical shell, based on the Donell-Mushtari theory, is obtained in explicit form. Eight main
variables are selected, they are used to write out all the equations and boundary conditions. This
formulation allowed us to solve a system of partial differential equtions using series expansion.
Also this formulation is suitable to adress elastically supported edges, which are generalization
of classical boudary conditions. The system of equations is solved accounting for deformation
component and without, it influence is negligible. A comparison is made with the experimental
results and with the data of other researchers, the correctness of present approach is obvious.
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PO3B’A30K B PATAX 3ATAUI ITPO BIJIBHI KOJIMBAHHSA

HUJIHAPUYHOI OBOJIOHKMU 3 JIOBIJIbBHUMU 'PAHUYHUMHU

YMOBAMMA
SIpocaas dyoux'; Irop Opunsik?; Onekciii Imenko®

TOB «lIIllI-1lenmpy, Kuis, Ykpaina
Inemumym npoonem miynocmi im. I'. C. [Tucapenxo HAH Ykpainu,
Kuis, YVkpaina

Hayionanvnuii mexniunut ynisepcumem Ykpainu « Kuiecokuii nonimexniunuti

incmumym imeni leops Cikopcvkoeo», Kuis, Ykpaina

Pesztome. V 6uensnioi memoody nouamkogux napamempis 3anucano mouni Gopmyau 0 NOWLYKY GIACHUX

yacmom KOIUBAHb YUNIHOPUYHOI 0OONOHKU 3 OO0BINGHUMU SPAHUYHUMU YMOBAMU HA OCHO8I meopii /[onena-

Mywmapi. Taxooic 0ano eupaszu 3 ypaxy8auusam oepopmayiinoi cKiadoeoi, nokasamo wo ii eniug oyice

He3HAYHULl | HUM MOJCIUGO 3nexmysamu. Haeedeno nopisusanna 3 nimepamyprumu OGHUMU Ul ROKA3AHO, WO

OMPUMAHI 3a1eHCHOCMT 00OPe ONUCYIOMb eKCEPUMEHMATIbHI Pe3YIbInami.

Knrouoei cnosa: yuninopuuna 06010HKa, po38 30K Y pAOax, 61ACHi 4aCmMomu KOJIUBAHb.
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