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Summary. Shape-memory alloys are used in various areas of science and industry due to their unique
shape memory effect and superelasticity, caused by martensite and reverse transformations. In this study, it is
proposed to model the functional properties of shape memory alloys, namely, the dissipated energy range, strain
range and stress range using the methods of machine learning. The modeling is carried ou in the specialized data
mining software environment called Orange. There were built five models for each dataset by means of method of
neural networks, random forest, gradient boosting, AdaBoost and KNN. The respective regression dependencies
are obtained and K fold cross-validation with K=5 is performed. The errors and coefficient for R? determination
are calculated as the results of modeling by means of the above mentioned machine learning methods for the range
of dissipated energy, stresses and strains on the number of loading cycles. For each physical quantity, the best
results in terms of method error are obtained for k-nearest neighbors method.
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Introduction. Shape-memory alloys (SMAS) are very popular due to their unique shape
memory effect and superelasticity caused by martensitic and reverse transformations [1]. SMAs are
metal alloys that can restore their original shape, memorizing it between two phases of
transformations, depending on temperature or magnetic field. They are very simple in application.
An alloy can be deformed by applying force and it returns to its original shape or size when heated
above certain temperature [2]. Many different types of SMAs are known, for example, Fe-Mn-Si,
Cu-Zn-Al, and Cu-AI-N, and each type is used in its own way, although Ni-Ti alloy (trade name
Nitinol) is very common due to its stable properties [3]. SMAs are widely used in medicine [4],
aerospace industry [5], motor engineering [6], civil engineering [7], etc. During operation, products
made on the basis of such alloys are subjected to long-term cyclic loading resulting in premature
loss of functional properties, exhaustion of durability and further destruction. Thus, it is necessary
to ensure sufficient functional properties and durability of parts and structural elements made of
SMA. Therefore, it is important to develop methods of modeling of functional properties and
fatigue life, which are based on the revealed regularities of pseudo-elastic behavior and durability
of such structural elements, which take into account the influence of stress ratio. Functional
properties, durability and residual durability of structural elements can be predicted with high
accuracy by machine learning methods, particularly, neural networks (NN), RandomForest,
AdaBoost, GradientBoosting, KNN.

Analysis of the available results and investigations. The strength and durability of
structural elements were studied, for example, in the investigations of Rampi Ramprasad [8]
and Frederic E. Bock [9]. G. M. Seed and G.S. Murphy in 1998 were the first ones in the
industry who predicted short cracks by neural networks (NN) [10].

Artificial intelligence methods can be used to model SMA behavior. At present,
artificial intelligence methods are intellectually actively used in materials science and fatigue
failure mechanics [11, 12].
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Machine learning (ML) is a part of artificial intelligence methods [13], which makes it
possible to solve effectively rather complicated problems. It showed excellent results in the
field of smart materials modeling [14].

Artificial Intelligence Material Selection (AIMS) framework is developed in paper [15].
This framework is complex program based on various machine learning methods which makes
it possible to investigate and find SMAs with desired properties.

NiTiHf alloys that can be used as actuators in space were found in the paper [16]. Seven
models constructed by machine learning methods are tested, and the model with the best
parameters is selected in order to determine new alloy compositions with predetermined
transformation temperature (Ms), temperature hysteresis, and operating output. In this study,
the K-nearest neighbors method showed the best results in identifying NiTiHf alloys with stable
functional properties.

In study [17], the method of SMA behavior modeling, based on NN, is proposed. This
NN makes it possible to predict SMA starin and temperature accurately and effectively.

Despite the well-known papers where machine learning methods are applied, the
prediction of SMA functional properties by the methods of artificial intelligence itself has not
been sufficiently studied and highlighted.

Methods of investigations and discussion of results. Dependences of the ranges of
dissipated energy, stresses and deformation on the number of load cycles, obtained in paper
[18], are predicted by machine learning methods in Orange 3.34.0 software environment. This
program makes it possible to construct flowcharts visually and obtain results in the form of
models, numerical data and graphs.

In general, three models were built. The dependences of the corresponding physical
value on the number of loading cycles are given to the input of each of them. The number of
loading cycles was considered as an independent variable, and physical value as dependent
variable. In order to increase the accuracy of the modelling results, the dataset is additionally
increased by interpolating the experimental dependences with cubic splines. In total, 599 points
were obtained. The sample was divided into two unequal parts. The training sample comprised
66 % of the total dataset. Regression dependencies were built by the methods of random forests,
neural networks, gradient boosting, AdaBoost, and the k-nearest neighbors method. Each
obtained model was additionally checked by cross-validation method 5 times. Flowchart of the
model built in Orange environment is shown in Fig. 1.
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Figure 1. Flowchart diagram of the model built in Orange environment
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Tables 1-3 presents the errors of the results and the coefficient of determination
obtained by modeling using the machine learning methods for the range of dissipated energy,
stresses and strains depending on the number of load cycles, respectively.

Table 1

Errors of the results and the coefficient of determination obtained by modeling using machine learning methods
for the range of dissipated energy

Model MSE RMSE MAE R?
kNN 0.086 0.294 0.114 1.000
AdaBoost 0.135 0.368 0.179 0.999
RandomForest 0.146 0.381 0.177 0.999
Gradient Boosting 0.150 0.388 0.207 0.999
Neural Network 1.133 1.064 0.493 0.994

For the range of dissipated energy, the smallest mean squared error (MSE) and,
accordingly, the RMSE, are obtained by the k-nearest neighbors (KNN) method. AdaBoost,
RandomForest, and GradientBoosting methods showed more or less the same results, with
MSEs 0.135, 0.146, and 0.150, respectively. Neural network with MSE equal to 1.133 took the
last place.

Table 2

Errors of the results and the coefficient of determination obtained by modeling using machine learning methods
for the range of strains

Model MSE RMSE MAE R?
kNN 0.0005 0.022 0.003 0.908
AdaBoost 0.0005 0.022 0.004 0.907
Random Forest 0.0005 0.022 0.003 0.906
Gradient Boosting 0.001 0.024 0.003 0.885
Neural Network 0.003 0.058 0.035 0.333

For the range of strains, the smallest root mean square error (MSE) and, accordingly,
RMSE, are obtained by the k-nearest neighbors (KNN), AdaBoost, and Random Forest
methods. GradientBoosting is in the 4th place. The last place is taken by Neural Network with
MSE equal to 0.003. Regarding MAE, it turned out to be approximately the same in the models
obtained by kNN, AdaBoost, Random Forest, and GradientBoosting.

Table 3

Errors of the results and the coefficient of modeling determination by machine learning methods for the range of
stresses

Model MSE RMSE MAE R?
kNN 0.006 0.294 0.114 1.000
AdaBoost 0.135 0.368 0.179 0.999
Random Forest 0.152 0.345 0.168 0.999
Gradient Boosting 0.150 0.388 0.207 0.999
Neural Network 1.133 1.064 0.493 0.994
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For the stress range, the smallest mean squared error (MSE) and, accordingly, RMSE,
were obtained by k-nearest neighbors (kNN) methods. AdaBoost took the second place with
MSE result equal to 0.135. RandomForest and GradientBoosting showed more or less the same
results. Neural Network with MSE result equal to 1.133 is in the 5 place.

Conclusions. SMA properties, i.e., the range of dissipated energy, strain and stresses
were modelled by machine learning methods (kNN, AdaBoost, Random Forest, Gradient
Boosting, Neural Network) in Orange software environment. The respective regression
dependencies were obtained and cross-validation of the results was carried out 5 times. There
were obtained the errors of the results and the coefficient of determination by modeling using
machine learning methods for the range of dissipated energy, stresses and strains depending on
the number of loading cycles, respectively. For each physical value, the best results in terms of
method errors were shown byO0 the k-nearest neighbors method.
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MOJIEJTIOBAHHSI ® YHKIIIOHAJIBHUX BJIACTUBOCTEM
CILVTIABIB 3 TAM’ATTIO @OPMHU METOJAMU MAIIIMHHOI'O
HABYAHHA

Ouer Scniii; Bnagucaas lemunx; Hagis Jlynuk

TepHoninbcokuu HAYIOHAILHUU MeXHIYHUL YHigepcumem imeni leana Ilynios,
Tepnonins, Ykpaina

Pestome. Cnnasu 3 nam ’ammro popmu (CIID) 3acmocosgyroms y bazamvox 2any3ax HayKu i mexHiku yepes
IxHiti yHikanvHull eghoexkm nam’smi opmu ma CYnepapyxcHicmv, KOMpi CAPUYUHEHO MAPMEHCUMHUM Md
360POMHUM NepemBOpeHHAMU. Y pobomi 3anponoHO8AHO MOOen08amMY QYHKYIOHANbHI 61ACMUBOCE CNILABIE 3
nam’smmio opmu, a came, po3max poscianoi eHepeii, oegpopmayil ma HANPY’CEHb MemoOamMu MAUUHHO2O0
HasyawuHs. Mooentogants 301CHIOBANOCA Y CeYiaNi308aHOMY NPOZPAMHOMY cepedosunyi ananizy oanux Orange.
L npoepama 0oszsonse 6izyanvHo OyOyeamu OIOK-cCXeMU ma OMPUMyeamu pe3yibmamu y eu2isioi mooeell,
YUCIO8UX OAHUX Ma epapiKie.

3azanom nobyodosano mpu mooeni. Ha 6xio koxcnoi 3 HUX NOOAHO 3aNEAHCHOCMI BIONOBIOHOI (PI3UUHOT
GeIUYUHU 8I0 KIIbKOCMI YUKII@ Hasanmaicenns. Kinbkicmb Yyuxiie HAGAHMANCEHHs PO32NS0ANU K HE3ANEHCHY
SMIHHY, A QI3UUHY BEIUNUHY — SIK 3ALENHCHY 3MIHHY. JII51 3011bUWEeHHsI MOYHOCMI Pe3yibmamie MOOet08aHHs, HAOIp
O0aHUX 000aMKOB0 30INbUUNY, [HMEPNONIOBABUU EKCNEPUMEHMATIbHI  30NI€HCHOCME  KYOIYHUMU  CIIAUHAMU.
3azanom ompumanu 599 mouok. Bubipxy nodinunu na 06i nepieni yacmunu. Haguanvna eubipka cmanosuna 66 %
6i0 3acanvHoi eubipku. Peepecitini 3anescHocmi 6yoysanu mMemooamu GURAOKOBUX JICIB, HEUPOHHUX MEPeiC,
epadienmnozo bycminey, AdaBoost ma memooom k-natibnudxcuux cyciois. Kosxcrny ompumany modens 000amroso
mecmysau Mmemooom nepexpecroi nepegipku (cross-validation) 5 pasis. [[nsa kooicnozo nabopy danux nooy0osano
n’ame Mooenell MemoooM HeUPOHHUX Mepedic, BUNAOKO8UX Jicig, epadienmuoco bycminey, AdaBoost ma memoody
K-naiibnuocuux cycioie. Ompumano 6i0n0GIOHI pecpeciiini 3anedcHOCmi ma 30IUCHEHO NepexpecHy NepegipKy
pe3ynomamis 5 pazie. Ompumano NOMUIKU pe3yrvmamie ma Koepiyienm oemepminayii MOOent08aHHIAM
3a3HAYEHUMU BUUje MemoOamMu MAWUHHO20 HABUAHHA OJiA PO3MAXY pO3CIAHOI enepzii, HanpyxceHv ma
Ooehopmayili 3a1exCHO 60 KIIbKOCMI YUKIIE HABAHMANCEHHS 6i0N06iOH0. [ KodicHOI (hizuunoi eenuuunu,
HAULNWI pe3yiomamu y mepminax nOMUiIoK Memooy Ompumano mMemooom k-natbaudxicuux cyciois.

Knrouosi cnosa: cniasu 3 nam’smmio Qopmu, MauluHHe HAGUAHHS, pezpecis, Memood k-Haubauxicuux
cycioig, BUNAOK0BUIL Jlic, HEUPOHHA Mepedicd.
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