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Summary. This study presents a significant enhancement to the Dynamic Time Warping (DTW) algorithm
for real-time applications like speech recognition. Through integration of SIMD (Single Instruction Multiple Data)
instructions to distance function, the research demonstrates how SSE accelerates DTW, markedly reducing
computation time. The paper not only explores the theoretical aspects of DTW and this optimization but also
provides empirical evidence of its effectiveness. Diverse dataset of 18 voice command classes was assembled,
recorded in controlled settings to ensure audio quality. The audio signal of each speech sample was segmented
into frames for detailed analysis of temporal dynamics. DTW search was performed on features set based on Mel
Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC), combined with delta features. A
comprehensive set of 27 features was extracted from each frame to capture critical speech characteristics. The
core of the study involved applying traditional DTW as a baseline for performance comparison with the
SSE-optimized DTW. The evaluation, focusing on computational time, included measurements like minimum,
maximum, average, and total computation times for both standard and SSE-optimized implementations.
Experimental results, conducted on datasets ranging from 5 to 60 WAV files per class, revealed that the SSE-
optimized DTW significantly outperformed the standard implementation across all dataset sizes. Particularly
noteworthy was the consistent speed of the SSE-optimized Manhattan and Euclidean distance functions, which is
crucial for real-time applications. The SSE-optimized DTW maintained a low average time, demonstrating remarkable
stability and efficiency, especially with larger datasets. The study illustrates the potential of SSE optimizations in speech
recognition, emphasizing the SSE-optimized DTW's capability to efficiently process large datasets.
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Problem Statement. Speech recognition systems are pivotal in various applications,
necessitating real-time processing and low-latency responses. Among the various algorithms
and techniques employed for this purpose, Dynamic Time Warping (DTW) has established
itself as a robust method for aligning and comparing temporal sequences. DTW achieves a high
accuracy in speech recognition in quiet environments that is not only comparable but often
exceeds that of current machine learning techniques [1].

DTW is a powerful algorithm renowned for its ability to accurately align temporal
sequences despite variations in length, speed, or timing. It used in various applications and
areas. For instance, in finance, DTW helps analysts uncover hidden patterns in market trends
through time-series data analysis [2]. In healthcare, DTW demonstrates its value by addressing
the challenge of modeling patient data when availability is limited [3]. In the area of speech
recognition, DTW shows unmatched ability to compare spoken words to reference models
facilitates accurate recognition even when speech patterns do not align linearly. This capability
is indispensable in voice-activated systems where diverse speaking speeds and pronunciations
are the norm.

However, the computationally intensive nature of traditional DTW presents significant
challenges, especially when real-time processing is required. This study introduces an
optimized approach to DTW, utilizing Streaming SIMD Extensions (SSE) to substantially
improve the computational efficiency of the algorithm. SSE, a form of Single Instruction
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Multiple Data (SIMD) operations, enables simultaneous processing of multiple data points,
thereby accelerating the core calculations within the DTW algorithm. By integrating SSE, this
research aims to reduce the computational load of DTW, enhancing the algorithm's applicability
in real-time speech recognition systems.

Analysis of the known results of the research. DTW relies on a distance
0 measure the similarity between two points in the sequences being compared. The
most common metric is Euclidean distance, which provides a straightforward geometrical
distance between two points [4]. However, DTW is not limited to this and can employ
other distances like Manhattan, Chebyshev, or Mahalanobis distances, each offering
different advantages depending on the specific characteristics of the data. Both the
Euclidean and Manhattan distances, are particular instances of the Minkowski distance [5].
These distance metrics were selected to assess the performance of the SSE-optimized DTW
algorithm.

The Euclidean distance is the most commonly used distance measure for time series
analysis due to its adherence to metric properties, including non-negativity, symmetry, and the
triangle inequality, which can help speed up search operations [5]. Euclidean distance is defined
as:

n
Aeuclidean (%, Y) = Z(xk — Yk)?
k=1

where x and y are two points in n-dimensional space, and x; and y, are the k-th elements of
these points.

The Manhattan distance, differs from the Euclidean distance in that it calculates the sum
of the absolute differences along each dimension, effectively moving horizontally and
vertically, rather than diagonally. This makes it particularly suitable for grid-based systems
where diagonal movement is not permissible [6]. Manhattan distance is defined as:

n

dManhattan(x' y) = z |xk - ykl

k=1

where x and y are two points in n-dimensional space, and x; and y, are the k-th elements of
these points.

The essence of DTW is to construct a cost matrix D where D(i, j) reflects the distance
between points x; from sequence X and y; from sequence Y. The DTW algorithm then seeks
the path through this matrix that minimizes the total cumulative distance, which can be
represented mathematically as:

D(i,j) = d(x;,y;) + min{D(i — 1,j — 1),D(i — 1,/),D(i,j — 1)}

The path corresponds to the alignment between the sequences, and the value of D(N, M)
gives the DTW distance between the sequences.

To enhance the performance of DTW, SSE can be utilized, particularly for the
computation of distances. SSE instructions process multiple data points simultaneously,
offering significant improvements in computational efficiency. The SIMD architecture is a
cornerstone in the design of modern processors, enabling multiple data points to be processed
in parallel under a single instruction, thereby optimizing performance through efficient data
parallelism [7].
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The SSE-optimized Euclidean distance between two vectors can be computed using the
following formula, adapted to operate on four floating points at a time with SSE:

n/4

dSSE_Euclidean (a: b) = Z(vai - vbi)z
i=1

Here, va; and vb; are the 4-length segments of vectors a and b loaded into SSE
registers. The implementation involves parallel subtraction, squaring, and summing operations,
executed through SSE intrinsic functions.

The SSE-optimized Manhattan distance between two vectors can be computed with the
following formula, adapted for parallel processing on four floating points at a time with SSE:

n/4

dsse_manhattan (%, Y) = z-_llvai — vb;|

i=

In this formulation, va; and vb; represent the 4-length segments of vectors a and b that
have been loaded into SSE registers. The computation is performed using parallel subtraction
to find the differences, a bitwise operation to obtain the absolute values, and subsequent
summation of these absolute values, all facilitated by SSE intrinsic functions.

Incorporating this SSE-based computation into the DTW algorithm results in the
following optimized formula for computing the cost matrix. For simplicity, we will use the
generic distance function dggg. First, let's define the recurrence relation for the cost matrix D
for DTW:

Dss(i,)) = dSSE(samplei,referencej) + min(D1,D2,D3),
where

D1 = Dggp (i — 1,j — 1), (the cost of the diagonal move),
D2 = Dggp (i — 1) + penalty, (the cost of the horizontal move),
D3 = Dggp(i,j — 1) + penalty, (the cost of the vertical move)

The horizontal move D2 and the vertical move D3 represent a misalignment
where one element from one sequence is aligned with multiple elements from the other
sequence. To discourage this and to reflect the additional cost of such misalignments,
a penalty is added. This penalty is a predefined value that increases the cost of the path
if it includes many such horizontal or vertical moves, which corresponds to a less
optimal alignment between the two sequences. The penalty in this DTW implementation
serves to guide the path towards the best alignment by adding a cost to less desirable
steps (horizontal and vertical) that do not directly match elements from the two sequences
being compared.

This implementation effectively accelerates the distance calculation process, a
computationally intensive part of the DTW algorithm, thereby enhancing the performance of
the entire speech recognition process. The Dggr function calculates the SSE-optimized distance
between two feature vectors sample; and reference;. The penalty is the additional cost for
horizontal or vertical moves in the DTW path, which is typically used to maintain a certain path
structure.
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DTW cost matrix at position (i, j) is the sum of the SSE-optimized distance for the
current position and the minimum of the three possible previous steps in the path, which
can be either the previous diagonal, horizontal, or vertical positions, each with its associated
cost.

We implemented SSE-optimized version of DTW in C++. The C++ standard library
does not directly expose SSE operations; however, these can be accessed through specific
compiler intrinsics [8] provided by headers such as <xmmintrin.h> for SSE instructions. The
intrinsic types and functions allow direct manipulation of data in 128-bit XMM registers,
enabling the parallel processing of floats. Among these primitives is _ m128, a data type
integral to SSE operations, which represents a vector of four single-precision floating-point
values.

The Euclidean distance calculation is a prime example of an operation that benefits
significantly from SSE optimization. In our implementation (Listing 1), we use _ m128 to
load vectors of four floats from the sequences being compared, employing _mm_loadu_ps.
We then perform element-wise subtraction with _mm_sub_ps, square the result
with _mm_mul_ps, and accumulate the squares with _mm_add_ps. The horizontal
addition operation _mm_hadd_ps is a key step, summing values across the SIMD register
pairs, and is applied twice to aggregate all four values into one. Finally, the square root of
the sum yields the Euclidean distance, providing a measure of similarity between feature
vectors.

Listing 1
Euclidean Distance Calculation with SSE Optimization

float EuclidianDistanceSSE(float* a, float* b, int size) {
_m128 sum = _mm_setzero_ps();
for (inti=0;i<size; i1 +=4) {
__ml128va=_mm_loadu_ps(a + i);
__m128 vb =_mm_loadu_ps(b + i);
__m128 diff =_mm_sub_ps(va, vb);
_m128 sg_diff = _mm_mul_ps(diff, diff);
sum =_mm_add_ps(sum, sq_diff);

}

sum = _mm_hadd_ps(sum, sum);
sum = _mm_hadd_ps(sum, sum);

/I Store the result back to the float array
float dist[4];
_mm_store_ps(dist, sum);

return sqrtf(dist[0]);

Manhattan distance calculations can also be optimized using SSE (Listing 2). The
process involves loading vectors, computing the absolute value of differences using a bitwise
ANDNOT operation with a sign bit mask (_mm_andnot_ps), and summing these absolute
values. The horizontal addition is again utilized to sum the vector elements. The result is a more
efficient computation of the Manhattan distance, which serves as another metric for DTW path
costs.
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Listing 2
Manhattan Distance Calculation with SSE Optimization

float ManhattanDistanceSSE(float* a, float* b, int size) {
__m128 sum = _mm_setzero_ps();
__m128sign_mask = _mm_setl ps(-0.f); //-0.f=1<<31

for (inti=0;i<size;i+=4){
__m128 va=_mm_loadu_ps(&ali]);
__m128vb=_mm_loadu_ps(&b[i]);
__m128 diff =_mm_sub_ps(va, vb);
__m128 abs_diff =_mm_andnot_ps(sign_mask, diff);

sum =_mm_add_ps(sum, abs_diff);

}

sum = _mm_hadd_ps(sum, sum);
sum = _mm_hadd_ps(sum, sum);

/I Store the result back to the float array
float dist[4];
_mm_store_ps(dist, sum);

return dist[0];

The provided code snippets (Listing 1 and 2) demonstrate the practical application of
SSE in computing distances. Each line of code is meticulously crafted to ensure data
parallelism. The Euclidean distance code loads unaligned float vectors, computes the squared
difference, and accumulates the sum using SIMD operations. Similarly, the Manhattan distance
code employs SSE to compute absolute differences efficiently.

Methodology. The study commenced with the collection of a comprehensive
dataset comprising speech samples from 18 distinct classes, with the number of WAV files
per class varying from 5 to 60. Each class corresponded to a specific command or phrase
commonly used in voice-activated systems. The evaluation was conducted on a set of
10 preloaded WAV files to assess the efficacy of the DTW in speech recognition tasks.
To ensure uniformity in audio quality, all recordings were carried out in a controlled
setting, resulting in WAV files standardized at a sample rate of 44,100 Hz and a bit depth
of 16 bits.

For each speech sample, the first step was to segment the continuous audio signal
into frames, typically spanning 20-70 milliseconds. This segmentation allowed for the
analysis of the signal's temporal dynamics, as speech is inherently non-stationary over long
durations.

From each frame, a set of 27 features was extracted, encapsulating both spectral and
temporal characteristics. This set included 13 Mel Frequency Cepstral Coefficients
(MFCC), which provide a representation of the power spectrum of sound, and 13 Linear
Predictive Coding (LPC) coefficients along with different delta coefficients, which model
the vocal tract shaping the speech signal and dynamic of signal. These features were
selected for their proven effectiveness in capturing the essential characteristics of speech
relevant to recognition tasks.
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The core of the methodology was the application of the DTW algorithm to align
and compare the feature sequences extracted from the speech samples. Traditional DTW
was first applied to establish a baseline for performance evaluation. This involved
computing the cost matrix by calculating distances between all possible pairs of frames
from the sample and reference sequences and finding the minimum cumulative distance
path.

The optimized DTW algorithm was applied to the same dataset, and its performance
was measured in terms of computational time. The measurements included the minimum,
maximum, average, and total computation times for both the SSE-optimized and traditional
algorithm implementations.

Experimental Results. The Euclidean distance results revealed a consistent
pattern (Fig. 1): the SSE-optimized DTW showed a significant reduction in
computation time across all dataset sizes compared to the regular DTW. Notably,
as the number of files per class increased, the average time for the SSE-optimized DTW
remained relatively stable, with minor fluctuations, averaging between 63 to
68 microseconds. In contrast, the regular DTW average time was substantially higher,
ranging from 209 to 218 microseconds, showcasing a more pronounced increase with larger
datasets.

DTW Performance with Euclidean Distance (Extended Dataset)
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Figure 1. Performance comparison of DTW algorithms using Euclidean distance

For the smallest dataset (5 files per class), the SSE-optimized DTW achieved a
minimum processing time of 9 microseconds, a maximum of 772 microseconds, and an average
of 67 microseconds over 900 operations. The regular DTW, on the other hand, started at a
minimum time of 30 microseconds, reaching a maximum of 1543 microseconds, with an
average of 213 microseconds.

As the dataset scaled to 60 files per class, the SSE-optimized DTW impressively
maintained a low average time of 63 microseconds, whereas the regular DTW increased
slightly to an average of 211 microseconds. This demonstrates the scalability and efficiency
of the SSE optimization, particularly in handling larger datasets where computational
efficiency becomes increasingly crucial.
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DTW Performance with Manhattan Distance (Extended Dataset)
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Figure 2. Performance comparison of DTW algorithms using Manhattan distance

The Manhattan distance results (Fig. 2) further corroborated the advantages of the SSE
optimization. The SSE-optimized DTW outperformed the regular DTW consistently,
maintaining an average computation time that was over four times faster. Starting with an
average time of 54 microseconds for the smallest dataset, the SSE-optimized DTW showed
remarkable stability, with the average time hovering around 50 to 53 microseconds for the
largest dataset of 60 files per class. The regular DTW started at an average time of 138
microseconds and exhibited a slight upward trend, ending at an average of 136 microseconds
for the largest dataset.

These results highlight the SSE-optimized DTW's capability to process speech
recognition tasks more efficiently, with the Manhattan distance metric results slightly
outperforming those of the Euclidean distance in terms of average computation time.

Conclusions. The experimental investigation of the SSE-optimized Dynamic Time
Warping algorithm, as detailed in this article, provides a comprehensive understanding of its
performance in speech recognition tasks. The results demonstrate the SSE optimization's
significant impact on processing efficiency. Across a range of dataset sizes, the SSE-optimized
DTW consistently outperformed the traditional DTW algorithm, without compromising the
accuracy of the speech recognition.

The consistent speed advantage of the SSE-optimized DTW — evident in both Euclidean
and Manhattan distance measurements — highlights the potential of SIMD optimizations in real-
time speech processing applications. Notably, the average computation times for SSE-optimized
DTW remained stable as the dataset size increased, a testament to the scalability of the
optimization. For instance, even when the number of files per class reached 60, the
SSE-optimized DTW maintained an average computation time of 63 microseconds for
Euclidean distance, illustrating only a minor increase from the 62 microseconds average time
observed with 15 files per class. Furthermore, the performance gap between SSE-optimized
DTW and the standard implementation grew with the increasing number of files, underscoring
the enhanced efficiency of the SSE approach in handling larger datasets.

The findings from this study establish SSE-optimized DTW as a highly effective
approach for speech recognition, providing significant computational advantages that are
essential for the deployment of responsive voice-controlled systems.
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MNPUCKOPEHHS AJITOPUTMY JTUHAMIYHOI TPAHC®OPMAIIIL
YACOBOI HIKAJIH JIJIA PO3II3BHABAHHSA MOBJIEHHS 3 SSE

KOpiii Bamr; Map’ana Poab; Mukoaa Yunxmap

Vorceopoocwvkuil nayionanvHutl yHieepcumem, Yoiceopoo, Ykpaina

Peztome. IIpeocmasneno 3naune B0OCKOHANEHHS ANCOPUMMY OUHAMIUHOI mpauc@opmayii uacosoi

wxanu (DTW) ons npocpam peanviozo uacy, maxkux, K po3nizHAGAHHA MOGU. 3a80sKu inmezpayii iHcmpyKyii
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Accelerating dynamic time warping for speech recognition with SSE

SIMD (Single Instruction Multiple Data) y ¢pynkyito oucmanyii, oocnioxcenns oemoucmpye, ax SSE npuckoproe
DTW, nomimuo crkopouyiouu uac obuucienus. [ocnioxceno we nuue meopemuuni acnekmu DTW ma yiei
onmumizayii, ane 1 HAOAHO eMnipuyHi 0oKasu it e¢pekmusrocmi. 3iopano pizHomanimuul Habip danux i3 18 kracie
20710COBUX KOMAHO, 3aNUCAHUX Y KOHMPOTbOSAHUX YMOBAX 015l 3a0e3neyents AKocmi 36yKy. AyOiocueHan KosiCHo20
3pA3KA MOGIEeHHs 08 Ce2MeHMOBaHUll Ha Kaopu Ol OemanibHo20 anaunisy uacogoi ounamixu. [louwyx DTW
npo8oouscs Ha HAOopi QYHKYIll HA OCHOBL Meruacmomuo KencmpanvHux koegiyicnmie (MFCC) i niniinoeo
npoero306anoco kooysanns (LPC) y noeonanui 3 oenbma-@ynxyismu. 3 KOHcHO20 Kadpy 6Y10 6UOLIeHO NOGHUU
Habip i3 27 o3Hax, wob 3agixcysamu eadxciusi xapaxmepucmuku moeu. OcCHO8010 00CniOdHceHHs 0y10
sacmocysanua mpaouyitinoco DTW sk b6a3u 015 nopienanHa npodykmusHocmi 3 onmumizosanum 013 SSE DTW.
Oyinto8ants, 30cepeorceHo HA OOHUCTIOBANLHOMY YACI, BKIIOYALO MAKI BUMIDIOBAHHA, AK MIHIMANbHUL,
MAKCUMATbHUL, CepeOHill i 3a2anbHuUll 4ac 004UCTIeHb K 0Ji1 CIMAHOAPMHUX peani3ayii, max i 0 ONMUMi308aHUX
ona SSE. Excnepumenmanvhi pe3yiomamu, npogedeHi Ha Habopax oauux 6i0 5 0o 60 ¢aiinie WAV ua knac,
nokasaau, wo onmumizosanuti o1 SSE DTW 3nauno nepesepuiye cmanoapmuy peanizayito 015 6cCix po3mipis
Haoopie Oanux. Ocobaugo eapmo i03HaAUUMU NOCMIUHY weuoKicms onmumizoeanux oas SSE @yuxyit
Manxemmena ma Esxnidoeoi siocmami, wo mac eupiwanbue 3HAYEHHS Ol NPOSPAM DEdlbHO20 HAC).
Onmumizosanuit 0 SSE DTW nokasye Husbkutl cepeowiil yac, OeMOHCMPYIOYU 4y0o8y cmabilbHicmb i
epexmusHicmyb, 0cOOIUBO 3 GeUKUMU HaAbopamu 0anux. JJocniooxcenns imocmpye nomenyian onmumizayii SSE y
PO3NIZHABAHHI MOBIEHHSL, NIOKPeCIoYy 30amuicms onmumizoeanozo onst SSE DTW eghexmueno onpayvogysamu
6eNUKI HAOOPU OAHUX.

Knrouosi cnosa: ancopumm ounamiunoi mpaucopmayii 4acoeoi wikaiu, po3nizHABAHHS MOBIEHHS,
Eexnioosa oucmanyis, Manxemmencovka oucmanyis.
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