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Summary. Design of production network based on multilayer neural models is considered in this
paper. Design of production network is crucial because it determines the optimal location of production and
logistics facilities, affects cost efficiency, customer service level and overall competitiveness in the global
market. Multi-layer neural networks play an important role in this process, using advanced algorithms,
machine learning models and optimization techniques to analyze huge amounts of data. Special attention is
focused on qualitative analysis of dynamic behavior, dynamic lattice model. The model includes rate
constants and initial conditions affecting the model trajectories, which can be classified as a stable site, limit
cycle, or chaotic attractor. We aim to solve the problem of qualitative behavior of the model as a problem of
multilayer neural models. A multivariate method of predicting nonlinear dynamics was used to construct the
training data set. Neural networks defined by regenerative architectures with linear and non-linear outputs
were analyzed and compared. As a result of the analysis, it was found that architectures with linear outputs
show better correspondence between expected and predicted values. Architectures with non-linear outputs,
despite their complexity, exhibit less accuracy and more deviation compared to linear ones. The single-layer
architecture with linear outputs shows the best accuracy, although the two-layer architecture with linear
outputs has the lowest rms error. Architectures with non-linear outputs have faster training times but poor
accuracy, while architectures with linear outputs require more training time but have lower errors. The
results obtained in the work indicate the importance of choosing the right architecture of the neural network
depending on the tasks and requirements for accuracy and training time of the model.

Key words: Design of production networks, lattice model, qualitative analysis, multivariate
forecasting method, multilayer neural models.
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Statement of the problem. Design of production network is of crucial importance,
as it determines the optimal placement of production and logistics facilities, affects cost
efficiency, the level of customer service and overall competitiveness in the global market
[1]. This makes it possible for companies to position strategically their activities to meet
the demands, minimize costs and adapt quickly to changing market conditions. Modern
production network design with the integration of multilayer neural networks is aimed at
optimizing the location of logistics and production sites.

Analysis of available investigation results. Multilayer neural networks play
an important role in the process of designing production network using advanced
algorithms, machine learning models, and optimization techniques to analyze huge
amounts of data [2]. In the field of big data, with increasing computing capabilities, neural
networks showed great strength in solving data classification and regression problems [3].
One of the key achievements is the application of predictive analytics to forecast demand
patterns, allowing companies to locate strategically their facilities closer to high-demand
regions [4].
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Machine learning techniques represented by multilayer neural networks have
attracted considerable attention due to their powerful capabilities in pattern classification,
speech recognition, image processing, etc. [5-6]. In addition, simulations driven by
multilayer neural networks make it possible to plan scenarios and analyze sensitivity,
assisting manufacturers in making reasoned decisions about network configuration [7].
Robotics and automation integrated with multilayer neural networks for the improvement
of operational efficiency in these facilities, provides higher level of adaptability and
scalability [8-9]. In fact, integration of multilayer neural networks into manufacturing
network design is transforming the industry by providing more manageable, flexible,
and optimized operations, ultimately resulting in increased competitiveness and
profitability [10].

Objective of the paper is to consider the manufacturing network design
based on multilayer neural models; to carry out qualitative analysis of the dynamic
behavior of the dynamic lattice model; to build the training data set using
multivariate method for predicting nonlinear dynamics; to analyze and compare neural
networks defined by corresponding architectures with linear and nonlinear
outputs.

Materials and methods. A. Lattice Model Design. The following model is developed
manufacturing network design problems arising from the transportation of raw materials
between logistics sites on rectangular grid using lattice differential equations with delay.

The terminology of the model comes from [11]. The model is based on a
number of assumptions. Assume the manufacturing network incorporates the logistic-

production sites that are located at the nodes of squared lattice (i, j) , (i, J) =LN . Letus accept

that for 1, at the given time, Vi,j (t) is the resources used for manufacturing the product
and currently located on the site, in turn I:i,j (t) is the finished product that is produced and

stored at (i, ]) .
The model takes into consideration the following parameters of the production and

transportation processes for arbitrary logistics and production site (..
1. Resources appear (can be «mined») within production site with probability >0 .

2. The producing of the product unit requires 7~ O units of the resource.

3. The use of resource is limited by coefficient &, >0, which makes it possible to
strive for the level of throughput for Vi j(t) .
4. Let us suppose that the transfer of resources can be possible from four neighboring

sites (i-1,j), (i+1J), (i.j-1),(.j+1) (Fig. 1) with vertices D "'a DI{Ia™?

- -_ o ', 1 1 _ kl - - R - -
Dy’ A D' {""A ?  where Di,jm >0 i,j,k,m=1Ln and A>0 is the distance between
the sites.
5. The production can be rejected with probability #; >0,

6. As a result of delays and unconsidered consequences, we observe the
increase in the cost of the resource required for products manufacturing to the probability
level of.7y.

7. Manufacturing tends to a certain throughput with probability 6; >0,

8. Let us assume 7>0is the time required to produce the unit of
output.
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Figure 1. Square lattice presenting four neighboring logistic-manufacturing sites

Based on the above-mentioned assumptions, we consider the increase in the cost of
resources in the site (I, J) during the time At: AV, j(t)=V; ;(t+At)-V, (t), taking into account the
following assumptions:

a) increasing on the value PVi, i (At caused by «mining» of a new resource;

b) decreasing on the value —7’|:|,j(t—T)Vi,j ()At | which is explained by the resources

required for products manufacturing at site (. 1) at instant (t-7) )
c) increasing on the value —A4,V; j(t—7)V; j(1)At due to resource throughput capacity.

The number of products in site (i, j) also depends on the distribution of raw materials
between four neighboring sites, which is taken into account while calculating the spatial

/N
operator S{Vj, j (1)}AL in the form (4).
Based on the above mentioned assumptions, the increase in the number of resources
AVi,j (t) in site (i, J) over a certain period of time can be written in the following form

AV; ()AL,
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Dividing the left and right sides of the whole equation by at and adding At —0, we get
the equation for determining the amount of raw resources Vi,j , >0,

av; j
dt
The growth of products in site (i, j) for the period of time At is

_ﬁ\/lj(t) - T)Vi,j(t)_5vvi,j(t_f)vi,j(t)"‘/s\{vi,j(t)} 1)

AR () =F jt+AD)-F ()

According to the assumptions stated above, the following analogs affect the change in
product at the production site (I, J) for a period of time At :
a) reduce by value —¢ F j (t)At due to the number of defective products.
b) increase by the amount N i, j (t-17) I:|,j (HAt determined by the resources required to

produce the output unit at the given time (t —7) (r — the value of the delay (time spent on
the production of the output unit));

c) decrease by value — Oy Fi,2j (t)At | which is caused by the decrease in the speed of
manufacturing new products 9 due to their approaching to the saturation limit.

From the above mentioned reasons, the growth of products AR (t)
in site  (,]) over period of time At can be writen as follows
AR J(t)— —us b (t)At+77;/\/, J(t )R, J(t)At 5fF (ALt >0

Dividing the left and right parts of the last equation by At with direction At—0, we
get the equation for determining the quantity of production:

dF; ;

dlt,J = (e +pV j—)—o¢ /i jO)F (1), 1 >0 )

Operator (4) includes constant ny, that describes possible imbalances between the

input and output flows of raw materials.
Each site is affected by the resources produced by four neighboring sites — two sites in
each direction, separated by the same distance A.

A'Z[D12V12+D v21—ndsan11’fv“-ndsbnoffvml i, j=1
A [D o+ D0 Vi 1+ DF LV i1 =DV | gDy Ve | =g DY vlJ] i=1 je2N-1

[DlN VN 1+D2 NVZN _ndsan1NilV1N -ﬂusanfﬁle i=Lj=N

[D. EVian + DI Vican +DIN aVin-1 ~NesonDi Vi ~NosonDiN Vi —“dsanii,ﬁ_lVi,Nl ie2N-1j=N
g{Vi,j}: _Z[DN,LNVN-LN DNV~ NgsonDN Vi ’ndsany[\jl;y{j\lilVN,Nl i=N,j=N 4
A_Z[DI[I\HIJVN 1O TV o1+ D Vi ot ~MastnDN Vi ~MestnDN | Vi *ndsanu,'jHlVN,jl i=N,je2N-1
‘Z[DNlnvNM+DN2vN2 NasonDn 1 Vg~ ndsanvaNll i=N,j=1

[D| 11|11+D|+11V|+11+D|2V|2 ndsan V|1 ndsan V|1 ndsan V' ie2N-1 j=1

{D: J11V| 1] +DH1 Vist +D} V| J—1+D| J+1V| i I"dsan| j V| j _ndsan

ij-1 VI] ndsan lV|J ndsan -+1Vi‘j} ije2,N-1

ij
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The boundary condition v; ; =0 for indices array i, j=0,N +1 is used.

B. Multivariate parameters method. The method was developed in [12] and
applied in [13-14] to various models of dynamical systems. Here, it was used for (1)—(4)
for the purpose of regression based on model parameters. The method includes a number of
steps.

1. Setting up parameter areas D, A | N BV o O n Mt T namely

DminSDSDmax1 AminSASAmax1 nmingnsnmax, ﬂminéﬂgﬁmax’

7/min§737max’ Oy, min <0y <Oy nax Ot min <Ot <Of max 77min377£77max’

Lt omin SHE SHemax Tmin <7 = Tmax

2. Construction of tuples training set 1=( D, A N B 7 & Ot m Mt T C)T
where c is class attribute. Here, we consider three values for the classes corresponding
to stable site, limit cycle, or chaotic attractor, respectively. Construction of the training
dataset is based on modeling the parameter values using multivariate prediction
method.

The whole model is defined by equations (1), (2) and initial functions:

Vi i =V%®) €0, F () = F%(® =0, .
te[-7,0),V;,;(0),F ;(0) >0 3

For square array, the following operator of spatially variable discretely distributed
diffusion is used [15].

3. Setting up the wvalues of the parameters for obtaining trajectories

X (IT) = (X g, X100y X
() =(Xo Xy tmax),where

X == (\/1’1,V112,...,V1,N ,V2'1,V2,2, ""’VZ,N ""’VN,N ’

T
Fl,l’ Fl,Z""’ Fl,N y Fz’l, F2’2, yuney FZ,N R FN,N)

tmax is maximum considered moment of time.

4. Obtaining the attribute — the largest Lyapunov exponent.

5. Application of the backward error propagation algorithm for adding model
parameters and use of 10-fold cross-validation to evaluate the performance of the neural
network. Return the neural network with the highest efficiency.

Investigation results. Specified parameter areas

Dinin =0.009, Apin=0.270, Npin =0.810, Bink-800 #min =1.800 &, min =0.450
St 1in 0450 77,.::0.360 5 pin =0.900 7, =0.020

Dimax =0.011, Ay =0.330, Ny =0990,  Brax=2200,  ymax =2.200
Symax =0.550  Of rax =0.550 | 7max =0.440 | s1f pay =1.100 , Ty =0.280

As the result of the experiment, we constructed the training dataset with 1000 tuples.
Neural networks defined by given architectures were considered.
1 One hidden layer with 8 neurons and linear outputs.
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The resulting optimal model for the root mean square error is shown in
Figure 2.

Error: 0.005438 Steps: 16224

Figure 2. The optimal model in terms of root mean square error, for one hidden layer with the number of
neurons 8 and linear outputs

The coincidence of expected and predicted values for the optimal model is shown in
Figure 3.

LLE (real vs predicted by NN ¢(8) linear outputs)

predicted
0.05
|

0.00

-0.05

+ NN ¢(8) linear outputs
T T T T

-0.05 0.00 0.05 0.10

expected

Figure 3. Coincidence of expected and predicted values for the optimal model, where there is one hidden
layer with the number of neurons 8 and linear outputs
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2. One hidden layer with 8 neurons and nonlinear outputs.
The resulting optimal model for the root mean square error is shown in Figure 4.

Error: 0.242891 Steps: 934

Figure 4. The optimal model for the root mean square error, for one hidden layer with the number of neurons
8 and non-linear outputs

The coincidence of expected and predicted values for the optimal model is shown in
Figure 5.

LLE (real vs predicted by NN c(8) linear outputs)

0.10
|

predicted

0.00
|

-0.05

+ NN ¢(8) linear outputs
I I I I
-0.05 0.00 0.05 0.10

expected

Figure 5. Coincidence of expected and predicted values for the optimal model, where there is one hidden
layer with the number of neurons 8 and non-linear outputs
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3. Two hidden layers with 8 and 5 neurons and linear outputs.
The resulting optimal model for the root mean square error is shown in Figure 6.

gamma

deltav

delta f

p.o o Ll O

etha

Error: 0.004586 Steps: 2324

Figure 6. The optimal model with respect to the root mean square error, for two hidden layers with the
number of neurons 8 and 5 and linear outputs

The coincidence of expected and predicted values for the optimal model is shown in
Figure 7.

LLE (real vs predicted by NN c(8,5) linear outputs)

predicted
0.05 0.10
| |

0.00
1

-0.05

+ NN ¢(8,5) linear outputs
I I I I
-0.05 0.00 0.05 0.10

expected

Figure 7. Coincidence of expected and predicted values for the optimal model, where there are two hidden
layers with the number of neurons 8 and 5 and linear outputs
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4. Two hidden layers with 8 and 5 neurons and nonlinear outputs.
The resulting optimal model for the root mean square error is shown in Figure 8.

Error: 0.242891 Steps: 934

Figure 8. The optimal model for the root mean square error obtained for two hidden layers with the number
of neurons 8 and 5 and nonlinear outputs

The coincidence of expected and predicted values for the optimal model is shown in
Figure 9.

LLE (real vs predicted by NN c(8,5) nonlinear outputs)
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Figure 9. Coincidence of expected and predicted values for the optimal model, where there are two hidden
layers with the number of neurons 8 and 5 and nonlinear outputs
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The constructed optimal models were compared with respect to two criteria. Firstly,
comparison of the optimal models of the above mentioned architectures in terms of the root
mean square error is shown in Fig. 10.

CV10 Error Rate
—
b
6 .
2 |
o
-
& . { o
o
o
—
p=4
: 1
'y
-
© s}
g
T T T T T
0.01 0.02 0.03 0.04 0.05

Error Rates

Figure 10. Comparison of the optimal models of the above-mentioned architectures with respect to root mean
square error

Secondly, comparison of the optimal models in terms of learning time is shown in
Figure 11.
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Figure 11. Comparison of optimal models regarding learning time
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Conclusions. Analyzing the neural network architectures, we can see that
architectures with linear outputs showed much better compliance of expected and
predicted values (Figures 3, 7). Architectures with nonlinear outputs show lower
accuracy and higher deviation compared to linear ones (Figures 5, 9). We compared
the optimal models of the above mentioned architectures in terms of root mean square
error (Figure 10), and concluded that two-layer architecture with linear outputs has
the best error, but at the same time it has the ability to fly out accidentally and make
a large error, so it is not the most accurate one. The worst accuracy rates are shown
by the two-layer architecture with nonlinear outputs, and the complexity of this
architecture only worsens the indicators. The single-layer architecture with nonlinear
outputs did not show high accuracy rates as well. Therefore, the best accuracy is shown by
the single-layer architecture with linear outputs. Comparisons of the optimal models in
terms of leatning time showed that architectures with nonlinear outputs have poor accuracy
but learn quickly, and architectures with linear outputs take longer time to learn but have
smaller errors.
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YAK004.8

BATATOBAPIALIMHUIA METO/I IPOTHO3YBAHHS HEJIIHIMHOIX
JAUHAMIKM BUPOBHUY0I MEPEKI HA OCHOBI
BATATOIIAPOBUX HEHPOHHUX MOJIEJIEA

Bacuibs Mapueniok?; Haranis Kir?

1YHieepcumem 6 benvcovro bsna, benvcoro bsna, [lonvwa
2TepHoninbcoKull HAYIOHANbHUL meXHiuHull yrieepcumem iveni leana ITynios,
Tepnonins, Ykpaina

Pe3tome. Poszenanymo npoexkmyanHs SUpOOHUHOI Mepexci HA OCHO8I Oazamouiaposux HeupoHHUX
mooeneil. [lpoexmysanhs GupoOHUUOL Mepedci MA€E BUPIUIATbHE 3HAYEHHS, OCKLIbKU BUSHAYAE ONMUMANbHE
DO3MIWEHH BUPOOHUYUX [ JIO2ICMUYHUX NOMYNCHOCHEN, 6NIUBAE HA e@eKmuUsHIiCmb Sumpam, piéeHb
00C1y208y8aHHs KIIEHMIE MA 3A2ANbHY KOHKYPEHMOCNPOMONCHICMb Ha c8imogomy punky. bacamowaposi
HeUpPOHHI Mepedici 8I0ieparoms 8adCIU8Y POb Y YbOMY NPOYeCi, BUKOPUCTIOBYIOUU Neped08i ani20pUmmiL, Mooeii
MAWUHHO2O HABYAKHS MA Memoou onmumizayii 014 ananisy eenuyesHoi Kinbkocmi 0anux. 3ocepediceno ysazy Ha
SAKICHOMY QHANI3I OUHAMIYHOI NO6ediHKU, OUHAMINHOI pewimuacmoi moleni. Modenvb 6xOHAE KOHCMAHMU
WBUOKOCTI MA NOYAMKOSL YMOSU, WO GNIUEAIOMb HA MPAEKMOPII MOOe, SIKI MOJNCHA KIACUQIKYysamu sK
cmabinbHull Y307, SPAHUYHUL YUK abo xaomuunuti ampaxmop. [Ipobremy AKicHOT no6edinKu MOOeNi npasHemo
supiwumu sk npoodremy 0a2amowaposux HeuponHux moolenei. /s nobyoosu HAsuaIbHO20 HAOOPY OAHUX
suxopucmano bazamogapiayiunuii Memoo npocHO3y8aHHs HelinitHoi ounamiku. Ilpoananizosano ma npogedero
NOPIGHANHS HelipoMepedic, SKI 3a0aHi GIONOGIOHUMU apXimeKmypamu, 3 JTHIUHUMY MA HeLTHIUHUMUY uxodamu. B
pe3yIbmami aHaizy GUAGNEHO, W0 APXIMeKmypu 3 JHIUHUMU 6UX00AMU OeMOHCMPYIOMb Kpawy 8i0N08IOHICHb
MIXC OUIKYBAHUMU MA NPOSHO308AHUMU 3HAYEHHAMU. ApXimeKmypu 3 HeNHIHUMU UX00AMU, He368AXHCAIOYU HA
CB0I0 CKIAOHICMb, NPOSABIAIOMb MEHULY MOYHICMb ma Olibuie 8I0XUNeHHS NOPIGHAHO 3 NinitHumu. Haiikpawy
MOYHICMb NOKA3YE OOHOWAPOBA apXimexKmypa 3 JIHIHUMU UX00AMU, X0Yd O80WAPO8A apXimexkmypa 3
JUHIUHUMU UXOO0AMU MAE HAUMEHULY CepeOHbOK8AOPAMUYHY NOXUOKY. Apximekmypu 3 HemHIUHUMU UX00aAMU
Xapaxkmepusyromocsa WeUOWUM YACOM HABYAHHA, aje U N02aHOl0 MOYHICMIO, 68 MOU 4ac AK apXimexkmypu 3
JEHIUHUMU  8UX00aMU  BUMA2AIOMb  OilbUle YaAcy OAs HAGUAHHA, alle Maiomov Menwii noxudbxu. Ompumani
pe3yrbmamu 8Ka3yIoms HA BANCIUSICMb 8UOOPY NPABUNLHOI ApXimeKmypu HetupOHHOI MepedxCi 3aNedNCHO 8i0
nocmasieHux 3a80aHb Mma 8UMO2 00 MOYHOCI MA 4ACY HABYAHHS MOOEI.

Kniouosi cnoea. npoexmysanns GUPOOHUYUX Mepedic, pewimuacma Moo0enb, AKICHUU aHani3,
bazamosapiayitinuii Memoo npocHO3y8anHs, 6A2amouaposi HetipoHHi MOOei.
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