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Summary. The paper uses the system of Navier equations in the stationary case. A cylindrical coordinate
system is considered, when the temperature does not depend on the angular variable. A partial solution of the
system of Navier equations, which does not contain elastic displacements, is called a purely temperature solution.
It was established that for purely temperature solutions the sum of normal stresses is zero and the volume
deformation is equal e =3a. T . An analytical expression of purely temperature displacements and stresses in the
cylindrical coordinate system in the axisymmetric case was found. The solution of the boundary value problem of
thermal conductivity, when the cylinder is heated on one end, cooled by liquid on the other with known heat losses
on the side surface, is proposed. The solution of the boundary value problem of thermal conductivity for such a
cylinder is given in the form of the sum of the basic temperature, which describes the heat balance, and the
perturbed temperature. The basic temperature has a polynomial form and integrally satisfies the boundary
conditions. The perturbed temperature has an exponential decrease with distance from the heated end and does
not carry out integral heat transfer. The found dependencies were used and a new solution to the heat conduction
equation was written in a cylindrical coordinate system. Simple formulas for expressing temperature changes have
been obtained. A new temperature solution to the system of thermoelasticity equations in a cylindrical coordinate
system has been written, when the temperature does not depend on the angular variable.

Key words: cylindrical coordinate system, thermoelastic state of the body, the axisymmetric temperature
state, temperature stresses and displacements.
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Introduction. Thermoelastic materials, under the influence of various temperature
fields, are used in aerospace engineering and other technologies [1-3]. Elastic bodies, subjected
to mechanical and thermal loads, are widely used in power engineering, technological, and
engineering structures. [4, 5].

Review of known static solutions of the equations of elasticity theory and
thermoelasticity. The methods for solving static boundary problems in elastic three-
dimensional bodies primarily rely on constructing and utilizing various representations of the
general solution to the equations of elasticity theory [1, 2, 5], where the temperature value is
predetermined. When investigating three-dimensional static problems in axisymmetric
thermoelasticity theory [1, 3, 4], some well-known solutions of elasticity theory equations are
applied, with a specific temperature distribution added, determined by the thermoelastic
potential [2, 4]. Many solutions to thermoelasticity theory problems are constructed using the
thermoelastic potential [4-6]. For instance, in the article [7], some analytical solutions to a
planar thermoelasticity problem are proposed using generalized functions and Fourier
transformations, while in [8], the thermoelastic potential is used to reduce the three-dimensional
thermoelastic state of a plate to solving a two-dimensional boundary problem. In the work [9],
a methodology for the analytical-numerical assessment of temperature stresses in a finite-length
hollow cylinder is developed based on the direct integration method. However, in the work
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[10], some new physically justified partial solutions to the thermoelasticity theory in Cartesian
coordinate systems have been found without using the thermoelastic potential. These solutions
more accurately account for the influence of the temperature field on the stressed state of
thermoelastic bodies. Furthermore, based on the work [11], a new representation of the general
solution to the thermoelasticity equations through four harmonic functions has been proposed
in the paper [12]. Physically justified temperature solutions to the Navier equations in a
cylindrical coordinate system were found in [12], when the temperature does not depend on the
axial variable.

The purpose of the article. To find purely temperature solutions of the Navier
equations in a cylindrical coordinate system for axisymmetric temperature distribution.

1. Statement of the problem and formulation of equations of static
thermoelasticity. Let's consider the general formulation of a three-dimensional static
problem in thermoelasticity theory for a cylindrical isotropic body in the case of
axisymmetric distribution of temperature and stresses. We set the initial temperature, when
temperature stresses are zero, equal to zero. The temperature in the body varies within limits
such that the elastic and thermal conductivity coefficients of the material can be modeled
as constants.

We will use the Duhamel-Neumann relationship for thermoelastic stresses [1-3] in a
homogeneous solid body in the axisymmetric case

or = 26| &y + ——e— 2V 0T |, o, =26| 6y +——e——qT |,
1-2v 1-2v

1-2v 1-2v
= 2G M v oT =1,=0,1,=G
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where G=E/2(1+v), E are shear and Young’s moduli, U, u(p=0, u, are elastic

. ou u ou . . .
displacements, sr=a—r, sq)=—r, sz=a—z are deformations of relative elongation,
r r z
ou, Ou, . . _
Yrz=—-+—, Yrp =0, Yz, =0 are relative shear strains, e=gr+¢&; +&, — volume
o oz

deformation, v is Poisson’s ratio, o is the coefficient of thermal expansion.

Let's substitute the relationship (1) into the equilibrium equation of a thermoelastic body
in cylindrical coordinate system and write down the system of Navier differential equations for
elastic displacements in the axisymmetric case [1, 2]

1 oe u _,1+v OT
"L =2 oa—,
1-2vor (2 1-2v or
1 de_,1+v ol

- ai’
1-2v oz 1-2v oz

Auy +
)

Au; +

2
where A = 1o r Q+ o is the axisymmetric Laplace operator [6, 13].
ror or §z2

We will consider that within the body, there is a stationary temperature field without internal
heat sources, which satisfies the Laplace equation.

AT (r,z)=0. ()
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We will consider the system of equations of thermoelasticity theory (2) as a system of
differential equations with known non-zero right-hand sides, determined by the harmonic
temperature (3). The general solution of the system of equations (2) will be presented as a sum
of homogeneous and particular solutions. It is known that the particular solution, as a rule, is
not uniquely determined, but up to an unknown homogeneous solution.

When solving many practical and scientific problems of thermoelasticity, there arises a
necessity to find a uniquely determined stress-strain state that depends solely on temperature
and does not contain elastic displacements. Therefore, we will make the corresponding
separation of displacements in the Cartesian coordinate system

u-=u?+u}, j=13, (4)

‘} are the components of the vector of elastic displacements (with index e ), uj are the

components of the temperature displacement (with index t), which are definitely determined
by temperature (3) and do not involve any elastic displacements.

where u

Definition. A partial solution u;, u; of the system of equations (2) in a thermoelastic

medium or body will be referred to as purely temperature if it does not contain elastic
displacements and is determined by a specified temperature T .

A thermoelastic body differs from a medium in that when calculating the final stresses
in the body, it is necessary to take into account the influence of purely temperature
displacements and stresses that arise on the surface of the body due to the influence of the
specified temperature T .

In the works [10, 12], known partial solutions of the Navier equations system are
analyzed in Cartesian and cylindrical coordinate systems, which do not contain elastic
displacements. Let's use the regularities found there and dependency (4) to obtain the following
simple expressions:

T
¢

T

oTe;=3aT. (5)

o +0,+0y, =0, e' =¢f +¢
Let's introduce the value of volume deformation (5) into the system (2) and obtain two
unconnected equations

ur oT oT
Auf ——F=—a—, AuY =—a—. 6
"2 or : oz ©)

In the work [10], the temperature solution of the Navier equations system has been found
in the Cartesian coordinate system: X = X, Xo =Y, X3 = Z

09 .
T — Q _]
Uj OX | B Rt (7)
where T, Q;j ——j TdX are three-dimensional harmonic functions,

9(X, Y, z) = % (X + yQy +2Q3) is biharmonic main function, y =-o/6, y; =4a/3. The
integrals Qj are defined such that they are harmonic functions, which equal zero when the
temperature is zero. Solution (7) is obtained under the assumption that the temperature depends
on three coordinates.
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Due to the invariance of the gradient vector and in accordance with works [10, 12], the
temperature solution of the system of equations (6) will be sought in the following form:

09 09
u?:@—r+2m§2r, u§=a—z+lez, (8)

where 3(r, z) =y (2rQ, + zQ,) is biharmonic main function, Q, =Q3 = Jsz — satisfies the

equation (3), Q, is an unknown function from temperature T (r, z). From these definitions, it
follows that functions rQ2,, zQ2, are biharmonic ones, and the following equation is true

AS(r,z) =-aT(r,z). 9

Let's note that the solution (8) is obtained under the assumption that the temperature
depends on two coordinates. If the temperature depends only on the radial coordinate, then the
temperature and displacement will have the form

T(r)=co+cInr, ul =azT(r), uf =r(ag+a Inr),
where & =0acCy, a9 = ;O(,(ZCO _Cl) .

2. Constructing a partial solution of equations of the theory of thermoelasticity in
cylindrical coordinate system for axisymmetric temperature.
Having substituted into the second equation (6) the displacement u; (8), and having

taken into account the dependence (9), we saw that the equation was satisfied. Having
substituted into the first equation (6) the displacement (8), we obtained the following
equation

89 1 89 241 or
T T TR A PO = —a .
or 2 or aa5%r 2" or (10)

Having taken into account the expression of the Laplace equation (3) and after some
mathematical transformations [13], we wrote for the function U (r, z) the formula of operators’

permutation

0 0 1 0
Afu=2au+= U,
or or r2 or (11)

To solve the equation (10) we have used the formulae (9), (11) and obtained the
following ratio

0 10 0
AS9="%9-a9T.
or  r2or *or (12)

Let’s substitute the dependence (12) into the equation (10) and simplify it

AQ — =0, =0. (13)
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The direct verification has found that the solution of equation (13), which is consistent
with the expression of functions (8), is expressed in terms of temperature as follows:

Q, =%erdr.

Let's write down all integrals involved in the temperature solution (8) of the system of
equations (6)

Q, =% [rTdr, ©, = [Tdz, 8(r,2) = (2] rTdr+202,) (14)

Therefore, the purely temperature solution of the axisymmetric equations of
thermoelasticity (2) takes the form (8), (14).

3. Solving the equation of heat conductivity (3) and finding the axisymmetric
distribution of temperature in the cylinder. Let’s consider the cylinder:
D ={(r,,z) € ([0, R]1x[0,2x] x[y,ho])}, where hy =0, h, =h, h/R>7. Let's assume that
the first (z=0) end face of the cylinder is being heated, while the second (z=h) end face is
subjected to intense cooling by a fluid, so that the temperature of the fluid near the end face
remains constant. Heat exchange is specified on the end faces of the cylinder according to
Newton's cooling law [2, 4]

TED o) -T(ro, (15)
T io[05 -T(r, ], (16)

where p j=K j/k, Kj, j =1,2 are the heat transfer coefficients on the cylinder’s ends, A is

c
J

values of the environment temperature near the ends of the cylinder, 6,(r)>T(r,0). Let's
consider the heat flux density vector g [1, 4]. A constant component of the heat flux density
vector q,e,is specified on the lateral surface of the cylinder, directed normal to the lateral

surface towards decreasing temperature. Therefore, the cylinder will be cooled on its lateral
surface

the coefficient of heat conductivity of the cylinder material, 6%, j =1,2 are the known average

Y oT(r,z)
or

|r:R’ (17)

where q, is a known constant amount of heat flows through an element of the cylindrical

surface per unit time.

To solve the boundary problem (3), (15)-(17), we will proceed similarly to solving
boundary problems in elasticity theory [11]. We will divide the overall temperature in the
cylinder into two components. The solution to this problem will be sought in the form of a sum
of the base temperature Ty(r,z), which describes the heat balance, and the disturbed

temperature T P(r, z), which accurately accounts for the temperature 01(r). The introduced
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functions must satisfy the equation (3). However, the base temperature Ty(r,z)has a

polynomial form and precisely satisfies condition (17) and the integral boundary conditions
(15), (16). It describes the heat transfer process in the cylinder, hence we refer to it as the base

temperature. The disturbed temperature TP (r, z) exponentially decreases with distance from

the heated end. The integral heat transfer by temperature TP(r,z) is equal to zero. Due to the
condition h/R > 7, it is practically equal to zero on the second end of the cylinder. The sum of
temperatures To(r,z)+T P(r,z) must satisfy the conditions (15) — (17) completely.

To find the introduced functions, let's average the boundary problem (3), (15), (16) over

the circular cross-section of the cylinder D, which has an area S = nR%. We have integrated
the Laplace equation (3) over the circular cross-section of the cylinder z and obtained the
equations

2
; T(2)=- jT(r 2)lr. (18)

where T(z) = ;j rT(r,z)dr . Let's mark the average value of the temperature with a wave at the

S
top. Let's also average relations (15), (16)

oT(0 =
O o T, (19)
T (h =~
")t T () (20)
/A
where 0 = éjreldr > 05 is a known average value of the environment temperature near the

S
first end of the cylinder.
Now we are finding the amount of heat [1, 4] entering the cylinder through the
section z=0

42(0) =42 T(D) 0. (21)

Let's imagine a portion of the cylinder D, ={(r,z) € ([0, R]x[0, z])}. We will find the
amount of heat g, that flows per unit time through the cross-section of the cylinder z

ot (2)
oz

0,(2) = 1S (22)

We are also calculating the amount of heat qg(z) flowing out per unit of time through
the lateral surface of the cylinder D,

zZ
qr(z) =-A2n ijdz_z R[q,dz =2nRq,z. (23)
0
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We take the relations (21)—(23) into consideration and write the heat balance
92(0) =0,(2) +ar(2)- (24)

We will use the relations (18)—(20) and find the base and the averaged temperature
which must satisfy the formulae (3), (21)—(24)

To(r,2) =[222 — 2]+ iz +1, To(2) = 20122 +tz +ty — % R?, (25)

where Ty(z) = éj'rTo(r, z)dr, g1, t;, tp are the unknown coefficients. The condition (17) is
S
fulfilled provided

%1 =0 /(2AR). (26)

Let’s substitute the temperature (25) into the expressions (22)—(24), use the dependence
(26), and find the values that are included in the temperature balance

q,(0) =—-ASt;, 9,(z) =—AS(49:2+1), qr(z) =4Shg;z. (27)

Let's incorporate the components (27) into the heat balance equation (24) and ensure
that it is true. From equation (27) it follows that t; <O0.

Let’s substitute the temperature (25) into the averaged boundary conditions (19), (20)
taking into account the dependence (26). We obtain a system of two equations to determine the
coefficients t; and t

ty =67 —to], t(Ll+uoh) =pp(65 —to + % R?)—2g;h(2+p,h). (28)
Let’s solve the equations (28) and find the coefficients of the base temperature (25)

205 + M2 RZ ~20(2+ poh)] + (L uoh)ug6
to =

by =65 —to]. (29)
[tz + py (L+ )] 1 =41l ~o]

Let's find the integrals (14) for the base temperature, which is determined by coefficients

(25), (26), (29). Substituting these integrals into the relations (8), we will determine the purely
temperature displacements for the base temperature (25)

us = ;ocrgl[h2 - r2]+ ar(tjz+tg), u; = ocgl[gz3 —32r2] + ;octl(z2 — r2) +atgz.  (30)
We must admit that the displacements (30) have been not causing any stresses.

As the base temperature Tg(r, z) (25) has taken into account the conditions (16), (17),

then the disturbed temperature TP (r,z) must satisfy the boundary conditions:
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oTP(r,2)
) =0 (31)
or Ir=r

on the lateral surface of the cylinder,

oTP(rh) 2
T =T ) (32)

at the other end of the cylinder. We will seek the solution to equation (3) using the method of
separation of variables in order to satisfy the condition (31). We are writing the disturbed

temperature TP(r,z) as a series [13, 14]

TP(r2)= S ado(Bere P 33)
k=1

where a are the unknown coefficients, B, >0 are eigenvalues, which satisfy the equation

J1(BR) =0 (34)

and they are arranged in ascending order. Since h/R>7, B, >0, the functions (33) decrease
exponentially, they will satisfy condition (32) with high accuracy. It is known from [14], that
the system of functions { Jo(Bxr) }, k =1,2,... by fulfilling the condition (34), it is orthogonal
over the interval [0, RJwith the weight function r:

R

[rIo(Bkr)Io(Bjr)dr =0, k= j. (35)
0

Let’s take into account the averaged base temperature (25), the disturbed temperature
(33) and write the condition (15)

iakBkJO(Bk 1) =pg[6,(r)— iakJO(Bk Nl (36)

k=1 k=1

We will take into account the conditions of orthogonality (35), and from the condition
(36) we will find the coefficients a .

Using the known disturbed temperature (33), and employing formulas (8), (14), we will
determine the purely temperature displacements. Adding to them the temperature displacements
(30), we will express the total temperature displacements in the cylinder.

4. Discussion of the results. In the theory of thermoelasticity, the thermoelastic
potential of displacements @ is widely used [1, 4]

uP =grad®. (37)
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Displacements from the potential will be denoted by the letter «p». The function @ is
defined in such a way as to be a partial solution of the system of thermoelasticity equations. It
determines the volume deformation and satisfies the Poisson equation:

P _ 1+v ol .V (I)—1+V oT (38)

1-v 1-v

As we can see, the expression for volume deformation (38) differs from the volume
deformation of the purely temperature solution (5). This is because in the displacement equation
(37), in addition to temperature components, elastic displacements are also included. As a
result, the solution (37) will not accurately account for the influence of the temperature field on
displacements and corresponding stresses in the thermoelastic cylinder.

Let's consider how displacements (8), (37) differ in the case of linear temperature
T1(z) =12 +ty, for which temperature displacements are known [6]

uf =ar(tyz+tg), Uy = ;octl(z2 - r2) +atyz. (39)

The temperature displacements (39) coincide with the linear part of displacements (30),
which are determined by the temperature T,(z) =tz +1,.

First, let's construct a particular solution of the last equation (38). To do this, we'll
express the linear temperature T;(z) through the derivative

T,(2) = Gw(r Z)

where function cp(rz)=ti(222—r2)+toz satisfies the equation (3). It enables writing the

solution of the last equation (38) as follows

1+va
O="—"70(r,z 4
Ly 2002). (40)

Using ratios (37), (40) displacements is found

6@ 1+v t od 1+v t
uP=""- Lor, uP="" a[-£ (622 —r?)+t,z]. 41
T 1y T Ty [8( )+t (41)

The representation of displacements (41) significantly differs from purely temperature
displacements (39). It is important to note that displacements (41) do not coincide with the
physically justified temperature displacements (39) for both constant T(z) =ty, and linear

T(z) =tz temperature cases.

Conclusions. It has been discovered that for purely temperature displacements in the
cylinder, the volume deformation is equal to e =3aT , and the sum of normal stresses equals
to zero. In a cylinder heated on one end and cooled on the other with known heat losses on the
lateral surface, the temperature is described by a quadratic base temperature and a disturbed
temperature. The disturbed temperature exponentially decreases with distance from the heated
end. Simple dependencies (8), (14) have been obtained to determine temperature displacements
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in the cylindrical coordinate system in the axisymmetric case. The found formulas allow solving
problems related to determining the thermoelastic state of cylindrical bodies.
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YK 539.3

PO3B'SI3KH TEOPII TEPMOIIPYKHOCTI ¥ TEILIOIPOBIJHOCTI
B UWJITHAPUYHIN CUCTEMI KOOPJIUHAT JIJIA
OCECUMETPUYHOI TEMIEPATYPU

BikTop PeBeHko

Inemumym npuxiadnux npoobiem MexaniKu i Mamemamuxy
imeni A. C. Iliocmpueawa HAH Yxpainu, Jlveis, Ykpaina

Pe3tome. [na onucysanms mepMONpPY’CHO20 CMAHY GUKOPUCMAHO JIHIUHY CMAMUYHY MOOelb
MPUBUMIDHO20 [30MPONHO20 MIiNa ni0 Oi€l0 CMAYIOHAPHO20 memnepamypHo2o nojs. Poszensnyma moodenw
deghopmosarnozo mina 6a3yemuvcs Ha NOOAHHI NEPEeMIUYeHb [ HaNPYJ CeHb V YUIIHOPUYHIT cucmemi KOOPOUHAm 6
ocecumMempudHoMy 8URAOKY uepes 2apmMoniuni yHkyii. Bukopucmano cnigsionowenns Jroamens—Heiimana ona
NOOAHHS. MEPMONPYIHCHUX HANPYIHCEHb 8 0OHOPIOHOMY meepOoMmy mini. Po3enanymo eunaoox, Koiu cmayioHapHa
memnepamypa 3a00801bHAE pieHAHHA Jlannaca 6 yuniHOpuyHitl cucmemi KOOPOUHAM 8 0CeCUMempPUYHOMY
sunaoky. Ilicnia niOocmanosku MepMONPYICHUX HANPYHCEHb Y DIGHAHHA DIGHOBASU MEPMONPYI’CHO20 MIind
ompumano cucmemy ougepenyiaroHux pienanv Hae’e 6 uacmunuHux noxioHux O0py2020 NOPAOKY HA NPYICHI U
memnepamyphi nepemiujernsi. 3a2anbHuil po36's30K He6eOeHO ) U0l CYyMU OOHOPIOHO20 U YACMKOB020
D036 3Ky, AKUL He Micmumb npyJicHux nepemiwensv. Llet uacmrogutl po3s'a3ok cucmemu pisnans Hag’c nazeano
yucmo memnepamyprum pose'sskom. Ilepemiwenns, Oegpopmayii i Hanpysicenns, sAKi 6UBHAUAIOMbCS YUMU
MeMNepamypHumMy  po3e sa3Kamu, HA38aHi memnepamypuumu. Buxopucmano ¢hizuuni 1 mamemamuyni
0COOIUBOCTINT MEPMONPYICHO20 HANPYHCEHO20 CMAHY Ul NOKA3AHO, WO OISl YUCMO MEMNEepaAmypHUx po3e'si3Kie
CYMA HOPMANBHUX Hanpyscenb 00pisnioc uymo, a ob'emne poswupenns oopisnioc € =3oT . 3uaiideno
AHATIMUYHULL 8UPA3 YUCHO MEeMNEPATNYPHUX NepeMiljeHb i HanpyiceHv y YUTTHOPUYHIL cucmemi KOOpOuHam 8
ocecumMempudHoMy 6undaoky. 3anponoHosano po38’a30K Kpauogoi 3adaui menionpogioHOCmi, KOAU YULIHOD
nidiepieacmuvcs Ha OOHOMY MOPYI, OXOIO0NCYEMBCA PIOUHOIO HA THUUOMY 3 8I00OMUMU MENLOBUMU BMPAMAMU HA
Oiynit nogepxui. Po3g'a30k kpaiiogoi 3adaui menionpogionocmi 0111 maKo2o YuiiHopa HA8eOeHo y 8ueiali cymu
OCHOBHOI memnepamypu, axka onucye oananc meniomu, i 30ypenoi memnepamypu. OcHO8HA memnepamypa mae
ROMTHOMIANbHUL GU2TIA0 | IHMESPATLHO 3A0080NILHAE Kpauiosi ymosu. 30ypena memnepamypa Mae eKCHOHEeHmue
CnadanHs npu 8io0aneni 6io Hazpimo2o mopys il He 30IUCHIOE THMeSPaIbHO20 NepeHocy meniomu. Bukxopucmano
SHAUOEHI 3aNedCHOCMi U 3anuUcaHo MmemMnepamypHull po36 30K CUCmeMU pIiGHAHb MEPMONPYHCHOCMI 8
YUNTHOPUYHIT cuceMi KOOPOUHAM, KOIU MeMNepamypa He 3aiedcums 6io0 Kymogoi 3minnoi. Ompumano npocmi
Gopmynu Ons eupadicenHss memnepamyphux Hanpycensb. I1o0yooeano 3acanvhuili po3e'si3oK pieHsAHb meopii
MEPMONPYIHCHOCMI Yepe3 Mpu 2apMOHIYHI QYHKYII, Koau memnepamypne noje He 3aiedcumv 6i0 0cbogoi
KOOpOUHami.

Knrwuosi cnosa: yuninopuuna cucmema KOOPOUHAM, MEPMONPYICHUL CMAH Mind, Qizuuni
Xapaxmepucmuku memMnepamypHo20 Cmawy, memMnepamypHi HanpyICceHHs i nepemiujeHHs.
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