/\ BicHuk TepHONiibChbKOro HALIOHAJIBLHOT0 TEXHIYHOT0 YHIBEPCHTETY
https://doi.org/10.33108/visnyk_tntu

my Scientific Journal of the Ternopil National Technical University
_/ 2024, Ne 1 (117) https://doi.org/10.33108/visnyk_tntu2025.01
ISSN 2522-4433. Web: visnyk.tntu.edu.ua

UDC 004.632

UTILIZING REINFORCEMENT LEARNING TO OPTIMIZE DATA
ARCHIVING STRATEGY FOR APPLICATION SERVER

Andrii Harasivka; Anatolii Lupenko

Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Abstract. Efficient data compression is a critical component of modern data backup systems, particularly in
environments with diverse file types and different performance features. Backups safeguard critical application
server data against unexpected failures, such as hardware malfunctions, software bugs, or cyberattacks, ensuring
business continuity. Many industries maintain secure data backups to meet legal and regulatory requirements,
ensuring loyalty to data protection and privacy laws. However regular backup solutions are often unable to adapt
effectively to the changing data of the application server. This paper proposes a novel reinforcement learning (RL)
approach using the Proximal Policy Optimization (PPO) model to dynamically optimize data archiving strategy,
which is part of backup systems. The model is trained to predict the most efficient combination of compression
parameters based on the attributes of files in the target file system. By learning from file-specific observations and
rewards, it adapts to work in a backup-specific environment to minimize consumed disk storage and backup time.
This adaptive approach enables real-time decision-making tailored to workload variations of the application server
environment. The proposed solution performs backup operations across various file types and configurations for the
learning phase, where the model evaluates and adjusts policy to maximize its efficiency. To evaluate the results
another client should perform all possible combinations of action parameters to determine all possible observations
and rewards. The rewards are compared to decisions made by the proposed solution to ensure PPO model has correct
and best possible predictions during the evaluation phase. This study highlights the potential of RL in automating
and optimizing data backup tasks, providing a scalable solution for high-performance systems or environments with
frequent data writes. The results obtained contribute to improving the software backup systems and DevOps
specialists’ work and reduce disk storage consumption and time elapsed for backup tasks for the application server.

Key words: data backup, machine learning, proximal policy optimization, backup strategy, compression
solution, reinforcement learning, application server.

https://doi.org/10.33108/visnyk_tntu2025.01.018 Received 13.11.2024
1. INTRODUCTION

Data backup is a main element of modern environments, ensuring that critical files and
systems can be restored in case of data loss. Data is exposed to numerous risks in the digital world,
including cyberattacks [1], natural disasters, hardware failures, software bugs or accidental
deletions. Amount of various devices (shared servers, personal PCs, or 10T devices) that store the
data and are connected to public networks increases every year [2]. Without an effective backup
strategy, organizations and individuals face the potential damage or complete loss of irreplaceable
data, which can result in financial losses, legal consequences, and spoiled reputations. Backup
provide a safeguard against such risks, enabling swift recovery and continuity in operations,
whether for businesses ensuring uptime or individuals protecting personal memories and sensitive
information. One of the most important parts of data backup is the corresponding archiving strategy,
which should optimize storage utilization and handle a sufficient level of performance [3].

As data volumes grow and storage environments become more complex, archiving
strategies must evolve to handle the diversity and scale of modern server environments. With
the increasing dependence on cloud storage and hybrid architectures [4], automated and
intelligent backup systems play an important role in reducing costs, improving efficiency, and
ensuring data security across distributed environments.

Traditional rule-based backup solutions, like Acronis or Veritas NetBackup, rely on
static heuristics [5], which are often unable to adapt effectively to diverse file types, varying

18 e e e e een ... CorTESPONding author: Anatolii Lupenko; e-mail: Lupenko.san@gmail.com

https://doi.org/10.33108/visnyk_tntu
https://doi.org/10.33108/visnyk_tntu2025.0
https://doi.org/10.33108/visnyk_tntu2025.01.018

Andrii Harasivka, Anatolii Lupenko

storage conditions, and evolving performance requirements of servers. However, as described
and proven in [6] and [7], a well-trained machine-learning model could avoid static behaviour
and dynamically adapt to various conditions of the environment [8]. Due to the various
performance of the application server and the increasing amount of data produced: database,
logs, cache — the new solution should know how to backup and compress different amounts of
incoming files [9]. Due to the fact that the environment will continuously change — the proposed
solution should also adapt via trial and error. The model of reinforcement learning type of ML
will be suitable for such dynamic environments [7]. The latest developments in one of the most
popular machine learning library stable-baselines3 [10] include: AC2, PPO, RecurrentPPO and
TRPO, these algorithms support all types of incoming data for training. PPO was selected for
its robustness and efficiency in handling continuous and discrete action spaces, as well as its
proven ability to balance exploration and exploitation during training [10].

The purpose of the new solution will be to achieve the best results of compression data
which will be compared to results of static compression solution.

2. EXPERIMENTAL SOLUTION

The use of machine learning (ML), specifically the Proximal Policy Optimization (PPO)
reinforcement learning algorithm, was chosen to reduce the complexity and perform optimization
of selecting best parameters for the archivation strategy for output data of the application server —
to maximize efficiency, minimize storage consumption, and reduce backup time, outperforming
static approaches and providing a scalable, adaptive solution for modern data backup challenges.

The environment in ML is the external system or simulation in which the agent operates
and interacts. A single operation in the environment is called a step. It defines the rules of
interaction, the current state, and how the agent’s actions influence that state. After step
completion environment provides observations to the agent and evaluates its actions by
returning a reward or penalty [11]. By providing different files for an agent, the environment
should emulate real-world conditions and serve as a training ground for the learning process of
dynamic optimization of backup strategy.

For this experiment, the environment will be an instance of a separate application entity
that will simulate a system where the agent decides how to perform a data backup based on
given file attributes and system constraints. It should know all possible actions to initialize the
action space of PPO model, in our case, it will be a backup type (full, incremental, or
differential), compression method (Deflate, Deflate64. BZip2, LZMA, PPMd, Copy),
compression level (0-9) and dictionary size (64 kB — 1536 MB). As the environment perform
a single action per step, so backup type will be always full, which means the whole source (file
or directory) will be backuped up to the target directory. Aside from action space, model should
have observation space of predefined, fixed size — it is the range of observable values that will
be used by PPO to create policy. Such range defined by environment limitations, e.g. maximum
allowed time or file size, in our case it will be a box with normalized values from 0 to 1. The
environment in RL should perform the next functions: reset and step.

The reset function in the environment performs the restart of the model’s observation
and reward to 0’s if there are no files provided (e.g. due to learning). If there are files provided
(e.g. due to evaluation) — reset will save file info, like file extension and file size so a model
could make an actual prediction based on this file info.

The step function of the environment represents the part of the episode - single operation
(in our case - backup task). The episode means a set of steps, so in our case episode will contain
steps for all incoming files for learning. The behavior of step will vary depending on the agent's
actions from action space: backup type and compression parameters. These actions will be
passed as parameters to perform an actual archivation process by NanaZip external software.
The environment will start the NanaZip command line interface in a subprocess with
arguments: source, target, compression method, compression level, and dictionary size.

ISSN 2522-4433. Bicnux THTY, Ne 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01ccovvvveveririricreirinininene 19

Utilizing reinforcement learning to optimize data archiving strategy for application server

To evaluate a performed step environment needs to collect additional information about
the step results. It will contain compression ratio, elapsed time, and success flag. The success
flag indicates if the action performed successfully and no error occurred. Compression ratio is
a measure of the effectiveness of a compression process, expressed as the ratio between the size
of the uncompressed data and the size of the compressed data. It quantifies the amount of space
saved during compression and is defined by the formula:

size of uncompressed data

compression ratio = -
size of compressed data

These values will be included in a reward to return as a model’s state and guide the
agent's learning, balancing objectives like minimizing compression time and storage usage
while maximizing compression efficiency. The reward could be defined by the formula:

R=S+T+CC,

where:

e R: Total reward.

+1.0,if successfull
-1.0 ,if failed
e T: Time penalty, defined as: T = —3 * backup time in total seconds
e C: Compression reward or penalty, defined as:

e S: Success reward or penalty, defined as: S = {

C= {0.1 * compression ratio ,if compressionratio <1
~ 0.3 * compression ratio ,if compression ratio > 1

Alongside calculation reward, the environment should provide observation from the
performed operation [12]. Observation should be defined as array of values that will fit into the
observation space of the model. For the proposed solution it will be: normalized file extension,
normalized file size, normalized backup time, normalized compression ratio, normalized
compression method, normalized compression level, and success flag (1 or 0) enabling the agent to
evaluate its actions. Normalized means that the value should be in the range from 0 to 1 so it could
be counted into policy calculation.

compression ratio

normalized compression ratio = - -
max compression ratio observed

file size

normalized file size = —
f max file size observed

))) elapsed time
normalized compression time =

max elapsed time observed

ext_map|extension],if extension € ext_map
normalized file extension = N

Tl ,if extension € ext_map
All scalar values and formulas used for reward and observation calculation in the environment
definition are achieved experimentally by trial and error and should be adjusted during development.
The most important part of ML — the evaluation (predictions) of the model should be
performed only after completing the learning phase (training). The evaluation phase contains

20 ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01

https://doi.org/10.33108/visnyk_tntu2025.0

Andrii Harasivka, Anatolii Lupenko

of reset and actual predictions made by model for actual data. Usually, data sets are split into
learning and evaluation sets which are used to the corresponding phase of ML model use.

3. RESULTS AND DISCUSSION

The evaluation of the PPO model's performance in learning optimal parameters for
backup strategy involves analyzing key metrics [13] such as elapsed time, compression ratio,
and cumulative reward value. By comparing the predicted actions (e.g., compression method
and compression level) with their actual outcomes, we can assess the model's ability to
minimize compression time while maximizing compression efficiency.

Software development with ML algorithms is iterative and requires a lot of training and
adjusting in the development process. The proposed solution was implemented using: Visual
Studio Code environment; Python interpreter; Anaconda distribution, which simplifies the
managing of Python references; and a set of other packages including stable-baseline3 ML
package. Project architecture becomes more complex as the requirements change. It should
include many components for work with FileSystem (create/delete directories, write/read files),
operating system (read time to measure performance), or call another software (start subprocess
with NanaZip). The flow diagram of the proposed solution’s behavior — Fig. 1. To have the
ability of restore and continue work without losing progress — ML model have a feature to save
model to disk on each learning step, so after restart solution could load previous state of model.

Start solution with
parameters of learning
and evaluating data

Load last state of model
or create a new
instance of PPO

Scan the environment
to know all file types
and max file size

eed to learn?
(defined by
parameters)

No,

eed to learn more?
defined by parameters),

Ye sﬁ

call learn() of
PPO model

v

reset environment,
Yes select next file to
evaluate
reset environment, ¢
select next file to
evaluate

Prediction needed?
defined by parameters;

step in environment

call predict() of

PPQ model perform a backup
process by
¢ NanaZip

step in environment

save model to disk

perform a backup
process by
NanaZip

calculate reward and
observation based on
metrics

Prediction complete

Learning of step finished

Figure 1. Flow diagram of behavior of proposed solution

ISSN 2522-4433. Bicnux THTY, Ne 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01ccovvvveveririricreirinininene 21

Utilizing reinforcement learning to optimize data archiving strategy for application server

The proposed solution was trained during ~96 hours in a simulated environment, which
includes sample PC (Table 1) and training data set: 23 files (8 images, 7 PDF documents,
2 archives, 3 executable, 3 text files). As our environment will perform compressing the file (an
actual backup task) — the smaller the training files will be — the faster the environment will
perform a backup task. So, smallest files was selected, Fig. 1.

Table 1

Test machine configuration

Category Name Specifications
Main board MSI X470 Gaming Pro
CPU AMD Ryzen 7 2700X 3.7 GHz
Hardware Hard disk Samsung SSD 970 I_EVO 1TB
Network card Intel (R) 1211 Gigabit Network
Memory 32 GB DDR4 3200 MHz
Graphics NVIDIA GeForce GTX 1060 6GB
Operating system Windows 10 Pro 22H2
IDE Visual Studio Code
Interpreter Python 3.12
o pip 24.0
Software Python distribution Anaconda 24.9.2
Gym 0.26.2
NumPy 1.26.4
Packages installed stable-baselines3 2.3.2
torch 2.5.1
tensorboard 2.18.0

Progress of learning of PPO model will be tracked by TensorBoard software, which will
analyse the logs produced by the model during learning, logs contains needed metrics [14]. By
default, TensorBoard will show few metrics: «rollout/ep_len_meany», «rollout/ep_rew_meany,
«time/fps». «ep_len_mean» metrics show the amount of steps per episode, but as there are fixed
8 files per episode and so 1 file per step there will be a straight line — Fig. 2.

rollout/ep_len_mean 52 .Ir'\

200k 400k 600k B0k, " M (32308

Run Smoothed Value Step Relative
. BanckupEnv\BanckupEny_0] [1323008 3,856 day

Figure 2. Graph of ep_len_mean — average mean of episode length during learning

The metric «ep_rew_mean» refers to the mean episode reward in reinforcement
learning, calculated as the average reward obtained by the agent over all steps within an
learning. It always starts from 0, when the model do not know about the environment but
should increase due to learning, a stable or increasing «ep_rew_mean» signals that the agent
is effectively understanding and optimizing the task of the environment. This metric
provides a measure of how well the PPO model is optimizing the backup process based on

22 ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01

https://doi.org/10.33108/visnyk_tntu2025.0

Andrii Harasivka, Anatolii Lupenko

the defined reward function. On average model have a reward 24.6, Fig. 3. Changing in the
environment or its behavior could lead to significant changes of models progress and reward
correspondingly.

rollout/ep_rew_mean SEIE S

[200k ok ok Bo0k ™ 1M 130

Run + Smaothed Value Step Relative
. BanckupEnv\BanckupEny_0 246905 246077 1323008 3.856 day

Figure 3. Graph of ep_rew_mean — average mean of reward during learning

The time/fps metric represents the training speed of the RL model, measured in frames
per second (FPS). It indicates how quickly the agent processes and learns from interactions with
the environment. Higher FPS values reflect more efficient training, which can be influenced by
factors like the complexity of the environment, computational resources, and model
architecture. As the environment is dependent directly on performance of a storage — time/fps
have very low resolution — only 8-9 fps, Fig. 4.

time/fps

0 200k 400k 600k 800k w 12M 1323008

Run+ Smoothed Value Step Relative
° BanckupEnviBanckupEnv._0 80861 8 1323008 3856 day

Figure 4. Graph of time/fps — amount of frames (actions) per second during learning

The proposed solution perform also console the output of each action made and step
performed, so performance could be tracked in editors too. For evaluation were selected another
files from actual production-ready server environment, one text file (96934 kB) and one photo
(444 kB), Fig. 5. Actual predictions of the solution could be seen both in the console and in
resulting files — Fig. 6, Fig. 7, Fig. 8.

W nName Date Type Size

. Access-20241106_013.log 08.11.2024 21:46 Log file Source File 96 934 KB
¥ photo-1541516160071-4bb0c5af65ba.jpg 08.12.2024 22:47 JPG Bitmap file 444 KB

Figure 5. Explorer view with input data (text and photo files) for evaluation of proposed solution

Access-20241106_013.1log , m: PPMd, c: 8, cr: 36.594 in 3.612711s, r: 2.140, state: [©.8, 1.8, 1.0, ©.9230769230769231, ©.8888888888888888, 1.0, 1.8]

Episode E:\src\StorageAgent\input_data\evaluate\Access-20241106_013.log: Reward = 2.14009120155799

Figure 6. Prediction in console output of proposed solution about text file — PPMd compression method
and 8 compression level

ISSN 2522-4433. Bicnux THTY, Ne 1 (117), 2025 https://doi.org/10.33108/Visnyk_tntu2025.01evvererremmrenmreenriannns 23

Utilizing reinforcement learning to optimize data archiving strategy for application server

: [0.5, 0.899358481260438824, 0.82750685715485392, 0.67692367602387693, 6.9, 0.804574686854385344, 1.8]

Figure 7. Prediction in console output of proposed solution about photo file — BZIP2 compression method
with 100 kB dictionary size and 5 compression level

W Name Date modified Type

photo-154151616007 1-4bb0c5af65ba.jpg-BZip2_100k-0-20241210_000828 21442.. 10.12.2024 00:08 Compressed (zipped)... 441 KB
Access-20241106_013.log-PPMd-8-20241210_000824_226869.zip 10.12.2024 00:08 Compressed (zipped)... 2 649 KB

Figure 8. Explorer view of output of backup actions made by proposed solution text and photo files

To evaluate the results made by the proposed solution [15], another software client (agent 2)
will be introduced, which will perform all possible combinations of backup parameters and write all
results to find the best combination of elapsed time and compression ratio. Results made by the client
will be written to a CSV file with columns «file name», «compression method», «compression
level», «elapsed time» and «compression ratio». Reward column [16] will be introduced to find the
best parameters, by the same formula: 2 + -3 * «elapsed_time» + (if «compression ratio» < 1;
«compression ratio» * 0.1; «compression ratio»*0.3). The best compression parameters will have
the highest score. Scatter charts were created to illustrate the result, Fig. 9 and Fig. 10.

Rewsard, ¢alculated as 2+(-3 f elapsed time) + if ion ratio < 1; ratio “ 0.1 ratio * 0.3}, sorted by ascending

Figure 9. Chart of all combinations of compression parameters of photo file, sorted by reward,
highest score — a combination of compression method BZIP2 100kB and compression level O

Reward, calculated as 2+(-3 / elapsed time) + if ratio < 1; ratio *0.1; ratic * 0.3}, sorted by ascendin &

sz

se's

sav

see

Figure 10. Chart of all combinations of compression parameters for text file, sorted by reward,
highest score — a combination of compression method PPMd and compression level 8

24 ... 1SSN 2522-4433. Scientific Journal of the TNTU, No 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01

https://doi.org/10.33108/visnyk_tntu2025.0

Andrii Harasivka, Anatolii Lupenko

B Name Date modified Type

Access-20241106_013.zip 10.12.2024 17:55 Compressed (zipped)... 8697 KB
photo-154151616007 1-4bb0c5af65ba.zip 10.12.2024 18:47 Compressed (zipped)... 444 KB

Figure 11. Backup tasks performed by a use of Windows Explorer “Send compressed (zipped) folder”,
resulting file size is 8697 kB for LOG file and 444 kB for JPG file

From Fig. 7 and 8 we can see that the proposed solution made a prediction to backup
LOG file (size 95934 kB) with the next compression parameters: PPMd compression method
and 8 compression level. This backup was performed in 3.612 s. with a compression ratio of
36.594 or as noted 36:1, so the prediction has the reward of 2.140. The resulting backup file
had size of 2649 kB. That combination of compression parameters is the best optimal which is
shown in Fig. 9. This backup consumes 3 times less storage and performed in 1.38 times faster
than the backup made by the default command of Microsoft Windows — such backup with size
8697 kB finished in 5.001 s. (Fig. 11). Command used: measure-command {powershell
Compress-Archive .\photo-1541516160071-4bb0c5af65ba.jpg photo.zip}.

Also, we can see that the proposed solution made a prediction to backup JPG file (size
444 kB) with the next compression parameters: BZIP2 compression method, 100 kB dictionary
size and 0 compression level. This backup was performed in 0.119 s. with a compression ratio
of 1.007 or as noted 1.007:1, so the prediction has the reward of 1.927. The resulting backup
file had size of 443 kB. That combination of compression parameters is the best optimal which
is shown in Fig. 9. This backup consume 1.002 times less storage and performed in 39.45 times
faster than backup made by built-in option of Microsoft Windows — backup with size 443 kB
finished in 4.695 s. (Fig. 11).

In summary, the PPO model could achieve successful results with enough steps in the
environment (to get the first successful predictions need approximately ~50000 steps) and a
sufficient amount of incoming data.

4. CONCLUSIONS

1. Results demonstrate that the proposed solution could find the best optimal of
compression parameters, so the resulting backup will use 3 times less storage than the backup
made by the regular static backup approach. It's done by achieving higher compression ratios
(36:1) and reduced backup time in 1.38 times for heterogeneous files.

2. The use of a normalized observation space, including metrics like file extension, file
size, and compression ratio, enables the PPO model to generalize well to a wide range of file
types. This approach can be scaled to handle diverse datasets and backup scenarios without
requiring manual configuration or file-specific rules.

3. The proposed solution could be used for implementing production-ready backup
software by wrapping the learned model along with python scripts into executable problem, e.g.
exe file for OS Microsoft Windows.

4. The proposed solution also identifies challenges, such as the need for fine-tuning
reward functions to handle complex trade-offs and the potential computational overhead of
training and deploying reinforcement learning models.

5. The model could be trained on a larger data set including medical, engineering or
mechanical calculations and corresponding files produced by application servers.

References
1. Ferdous J., Islam R., Mahboubi A., Islam Z. (2023). A Review of State-of-the-Art Malware Attack Trends
and Defense Mechanisms. Institute of Electrical and Electronics Engineers (IEEE) Access, pp. 121118—
121141. https://doi.org/10.1109/ACCESS.2023.3328351

ISSN 2522-4433. Bicnux THTY, Ne 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01ccovvvveveririricreirinininene 25

Utilizing reinforcement learning to optimize data archiving strategy for application server

10.

11.

12.

13.

14.

15.

16.

Number of Internet of Things (IoT) connections worldwide from 2022 to 2023, with forecasts from
2024 to 2033. Available at: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
(accessed 09.12.2024).

Vanness R., Chowdhury M., Rifat N. (2023). Malware: A Software for Cybercrime // Institute of Electrical
and Electronics Engineers (IEEE) International Conference on Electro Information Technology (elT),
pp. 513-518. https://doi.org/10.1109/el1T53891.2022.9813970

Aranyi G., Vathy-Fogarassy A., Sziics V. (2024) Evaluation of a New-Concept Secure File Server
Solution. Future Internet, Multidisciplinary Digital Publishing Institute (MDPI), 16 (9), p. 306.
https://doi.org/10.3390/fi16090306

Chang D., Li L., Chang Y., Qiao Z. (2021) Cloud Computing Storage Backup and Recovery Strategy Based
on Secure 10T and Spark. Mobile Information SystemsVolume 2021, issue 1, volume 6, p. 9505249.
https://doi.org/10.1155/2021/9505249

Wang Z., Goudarzi M., Gong M., Buyya R. (2024). Deep Reinforcement Learning-based scheduling for
optimizing system load and response time in edge and fog computing environments. Future Generation
Computer Systems 152, pp. 55-69. https://doi.org/10.1016/j.future.2023.10.012

Zhou G., Tian W., Buyya R., Xue R., Song L. (2024). Deep reinforcement learning-based methods for
resource scheduling in cloud computing: a review and future directions. Artificial Intelligence Review,
pp. 57-124. https://doi.org/10.1007/s10462-024-10756-9

Lee S., Kang J, Kim J., Baek W., Yoon H. (2024) A Study on Developing a Model for Predicting the
Compression Index of the South Coast Clay of Korea Using Statistical Analysis and Machine Learning
Techniques. Applied Sciences (Switzerland), volume 14, issue 3, p. 952. https://doi.org/10.3390/app14030952
Dantas P., Sabino da Silva W., Cordeiro L., Carvalho C. (2024) A comprehensive review of model
compression techniques in machine learning. Applied Intelligence, volume 54, issue 22, pp. 11804-11844.
https://doi.org/10.1007/s10489-024-05747-w

RL Algorithms — Stable Baselines3 2.5.0a0 documentation, Available at: https://stable-baselines3.
readthedocs.io/en/master/guide/algos.html#rl-algorithms/ (accessed: 09.12.2024).

Stefanyshyn V., Stefanyshyn I., Pastukh O., Kulikov S. (2024) Comparison of the accuracy of machine learning
algorithms for brain-computer interaction based on high-performance computing technologies. Scientific
Journal of TNTU (Tern.), vol. 115, no. 3, pp. 82-90. https://doi.org/10.33108/visnyk_tntu2024.03.082

Zhao L., Gatsis K., Papachristodoulou A.. Stable and Safe Reinforcement Learning via a Barrier-Lyapunov
Actor-Critic Approach. 62nd Institute of Electrical and Electronics Engineers (IEEE) Conference on
Decision and Control (CDC), 2023, pp.1320-1325. https://doi.org/10.1109/CDC49753.2023.10383742
Varshosaz M., Ghaffari M., Johnsen E., Wasowski A. Formal Specification and Testing for Reinforcement
Learning. 2022 Institute of Electrical and Electronics Engineers (IEEE) International Conference on Electro
Information Technology (elT), 2022, pp. 513-518.

Pawlicki M., Pawlicka A., Uccello F., Szelest S., D’ Antonio S., Kozik R., Chora$ M. (2024) Evaluating the
necessity of the multiple metrics for assessing explainable Al: A critical examination. Neurocomputing,
volume 602, p. 128282. https://doi.org/10.1016/j.neucom.2024.128282

Stefanyshyn V., Stefanyshyn 1., Pastukh O., Kulikov S.. (2024) Comparison of the accuracy of machine learning
algorithms for brain-computer interaction based on high-performance computing technologies // Scientific
Journal of TNTU (Tern.), vol. 115, no. 3, pp. 82-90. https://doi.org/10.33108/visnyk_tntu2024.03.082
Abdulhameed A. S., Lupenko S. (2022) Potentials of reinforcement learning in contemporary scenarios //
Scientific Journal of TNTU (Tern.), vol. 106, no. 2, pp. 92-100. https://doi.org/10.33108/visnyk_tntu2022.02.092

YK 004.632

BUKOPUCTAHHS HABYAHHS 3 TIJIKPITIIEHHAM JJIS
OINTUMI3ALII CTPATETTi APXIBYBAHHS JAHUX JJISI
IMPOTPAMHOT'O CEPBEPA

Anapiii I'apaciBka; Anarodiii Jlynenko

TepHoninbcokuul HaAYioHAIbHUL MeXHIYHUU YHigepcumem imeHi leana Ilynios,

Tepnonins, Ykpaina

Pezrome. Ed)eKmueHe CMUCHEHHS OAHUX € KPpUMU4HO 8ANCIUBUM KOMNOHEHMOM CYYACHUX cucmem

Pe3epP8HO20 KONIHBAHHs OAHUX, 0CODIUBO 8 CepedosUax i3 PI3HUMU MUNAMU Qainie i pisHuMU QYHKYIAMU

26

<eere. ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01

https://doi.org/10.33108/visnyk_tntu2025.0

Andrii Harasivka, Anatolii Lupenko

npodykmugHocmi. Pe3zepene KONil08aHHA 3aXUWAE KPUMUYHO BANCIUBI OAHI NPOSPAMHO20 cepsepa 8i0
HeouiKyeanux 30018, maxkux sSK anapamui 3001, NOMUIKU NPOSPAMHO20 3a0e3neyennsi abo Kibepamaxu,
3abesneuyrouu besnepepsHicmes pobomu 6iznecy. Haoiiini cmpameezii pezepeno2o Konio8anHs HeoOXiOHi 0Jis
6IOHOGNICHHs KDUMUYHO BANCIUGUX cucmeM [ciyach, 3a0e3neuenns besnepepgrocmi pobomu 6 pasi 300i6
ingppacmpyxkmypu. bazamo eanyseil niompumyroms Oe3neune pezepere KONIWBAHHSI OAHUX BION0BIOHO 00
Npagosux i HOPMAMUBHUX GUMOZ WOO0 3axXucmy OaHux ma KoHu@idenyiunocmi. Ha ocnoei auanizy
eKCNEepUMEHMATbHUX OAHUX 3aNPONOHOBANHO HOBULL NIOXI0 00 HABYAHHI 3 NIOKPINAEHHAM, BUKOPUCMOBYIOUU
MOOeNb NPOKCUMATbHOT NOLITMUKY ONMUMI3ayii 014 OuHamiuHoi onmumizayii cmpamezii apxigy8anHsa OAHUX,
AKA € YACMUHOI cucmem pe3epeHo2o KoniteawHsa. Moodenv naguena nepedbauamu HallegheKmMusHiuLy
KOMOIHaYito napamempie CMUCHEeHHs Ha 0CHO8I ampubymis ¢aiinié y yinbogiu haunosii cucmemi, 8u84arOyU
cmaH cepedoguiya ma CKANApHY 0Oe3nocepedHio 8UHALOPOOY | HAC pe3epeHO20 KONIBAHHA OAHUX Ol
KoHkpemHux ¢haiinie. Lleti adanmusenuti nioxio 0036015€ MOOeNi NPUUMAMU DIlUEHHS 8 PeXCUMi pedibH020
yacy, npucmocosani 00 eapiayii poo04020 HABAHMANCEHHS NPOSPAMHO20 cepsepa. IIpononosanuii nioxio
dae 3moz2y peanizyeamu onepayii pe3epeHoco KONIO6AHHA PIZHUX Munié Qaiiiié 3 NeeHOK KOMOIHAYIEH
napamempie cmucHenus. llpu ybomy mooenv, HABUAIOUUCH, OYIHIOE BUHAZOPOOY MA KOPUSYE NOIMUKY 05
makcumizayii ceoei eqpexmuenocmi npocHo3yeanHs. /s OYyiHI08aHHs pe3yibmamis eKCnepumMeHmy HeoOXioHo
BUKOHAMU pe3epeHe KOMIIGAHHS 31 GCIMA MOJNCIUBUMU KOMOIHAYIAMU NAPAMEmpie CMUCHEHHS, U0
BUSHAYUMU MAKCUMATbHY MONCIUBY BUHA2OPOOY 05l KOJCHOI KoMOIHayii napamempié CMUCHEHHS.
Makcumanvna 6unazopooa BUKOPUCMOBYEMbCS OJisl NOPIGHAHHS 3 BUHA2OPOOOI0 MOOeli 6 npoyeci
oyinwosanus mooeni. Haeonoweno mna nomenyiani MAWUHHO20 HABYAHHA Ol ABMOMAMU3AYii
ma onmumizayii 3a80aHb pe3epeH020 KONIIBAHHA OAHUX, HAOAIOYU ONMUMI308AHe piuieHHs O/
BUCOKONPOOYKMUBHUX cuchmem abo cepedoguuy i3 YACMUM 3ANUCYBAHHAM Oanux. OmpumaHi pe3yrvmamu
CHPUAMUMYMb NOKPAULEHHIO NPOcpaAMHO20 3abesneyenns ma pobomu DevOps cneyianicmie, a maxodxic
3MeHWAamsb 8UKOPUCMAHHA OUCKOBO20 NPOCMOPY Md YAC pe3ep8HO20 KONI08AHHS 01 OAHUX NPOSPAMHO20
cepsepa.

Kntouosi cnosa: pesepgne Konito8anHs OaHUX, MAWUNHE HAGUAHHS, ONMUMI3AYISL NPOKCUMATLHOT
NONIMUKU, CMpameeis pe3epeno20 KONilO8AHHS, DIUleHHs OAs CMUCHEHHS, HABUAHHA 3 NIOKPINJeHHAM,
npoepamuull cepgep.

https://doi.org/10.33108/visnyk_tntu2025.01.018 Ompumaro 13.11.2024

ISSN 2522-4433. Bicnux THTY, Ne 1 (117), 2025 https://doi.org/10.33108/visnyk_tntu2025.01ccovvvveveririricreirinininene 27

https://doi.org/10.33108/visnyk_tntu2025.01.018

