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Abstract. This study presents an adaptive PSO (Particle Swarm Optimization) algorithm as the foundation for
a swarm intelligence approach in multi-UAV operations. The traditional PSO formula for particle velocity and position
updates was modified to incorporate a variation strategy from Differential Evolution (DE), enabling UAVs to
dynamically adjust their trajectories. The integration of deep reinforcement learning (DRL) further enhances the model's
ability to optimize task offloading and computational distribution, ensuring that UAVs function as efficient edge nodes.
An experimental evaluation was conducted to assess the proposed PSO-Edge method compared to other machine
learning techniques, specifically Random Forest and Support Vector Machine (SVM). The experimental setup involved
a simulation environment where UAVs were tasked to monitor data and execute missions over a defined area. The
hardware included an Intel Xeon Gold 6248R CPU, 128 GB RAM, and an NVIDIA Tesla V100 GPU, with the simulation
executed using Python 3.8. The proposed PSO-Edge algorithm demonstrated superior performance across multiple
metrics: reducing task completion time by 42.1 minutes compared to Random Forest and SVM; achieving the lowest
energy consumption per task at 28.9 Wh; demonstrating efficient communication with the least latency at 0.15 seconds;
and achieving the highest task accuracy at 96%. The results confirm that the PSO-Edge method outperforms traditional
machine learning approaches in task efficiency, energy consumption, communication latency, and accuracy. This
highlights the benefits of integrating edge computing with the PSO algorithm, establishing it as a robust solution for
multi-UAV operations. The findings have significant implications for optimizing UAV-based applications, particularly
in environments requiring dynamic adaptation and efficient resource management.

Key words: autonomous trajectory optimization, deep reinforcement learning, multi-agent edge
computing, collision avoidance metrics, real-time data processing, adaptive energy modulation.
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1. INTRODUCTION

Operations involving multiple drones are becoming increasingly significant across
various fields, from agricultural monitoring and disaster response to logistics and infrastructure
inspection. However, as the scale and complexity of these operations grow, they face significant
challenges in coordination, communication, and efficient data management. Traditional manual
control is insufficient to address the dynamic nature of tasks involving multiple drones,
particularly in unpredictable environments or over large areas requiring real-time decision-
making. This makes automation not just a beneficial addition but a critical component for the
effective operation of multiple unmanned aerial vehicles (UAVS).

To solve these problems, a promising solution lies in combining swarm intelligence and
the concept of edge computing. Swarm intelligence enables drones to collaborate by mimicking
the natural efficiency observed in animal groups, while real-time data processing ensures that
drones respond swiftly to changing conditions. On the other hand, edge computing provides the
capability for decentralized data analysis, allowing drones to process information locally
without relying solely on external networks.

Individual UAV systems often encounter limitations such as restricted range, payload
capacity, and sensing capabilities, making it difficult to efficiently perform large-scale
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operations. To overcome these constraints, the cooperative use of multiple UAVSs, guided by
the principles of swarm intelligence, ensures greater adaptability, reliability, and efficiency in
task execution. Integrating the Particle Swarm Optimization (PSO) algorithm, Differential
Evolution (DE), and intelligent sensing networks can significantly enhance the coordination
and adaptability of multi-drone swarms, offering solutions for real-time data processing,
dynamic trajectory planning, and adaptive control.

The study [1] addresses the limitations of using UAVs for bridge inspection, such as
high noise levels and insufficient resolution in 3D bridge models created via photogrammetry.
A novel 3D trajectory planning method based on Building Information Modeling (BIM) has
been proposed to enhance UAV flight plans and improve the quality of photogrammetric
models. This method uses a simplified BIM model of the bridge as input data, generating
efficient UAV viewpoints while considering photogrammetry requirements and flight safety
regulations. It subsequently adjusts inaccessible viewpoints and creates obstacle-free flight
trajectories. The research under consideration validates the proposed method by testing it on a
real beam bridge and comparing it with conventional UAV flight plans. The obtained results
have demonstrated that the proposed method significantly reduces noise, improves model
resolution, and enhances efficiency, resulting in higher-quality 3D bridge models suitable for
damage detection with minimal human intervention. This method has potential for broader
applications in reconstructing other types of infrastructure.

In study [2], an advanced trajectory planning method for UAVS is presented using an
optimized Artificial Potential Field (APF) approach. By integrating a pre-planned trajectory
generated by the Rapidly Expanding Random Tree (RRT) algorithm, the proposed method
addresses common issues in traditional APF approaches, such as local minimum problems. The
method under consideration has introduced some continuous particles and intermediate path
points to create attractive forces that assist UAVs in avoiding local minima. Additionally,
dynamic adjustments of gravity and repulsion coefficients, as well as non-gravity zones around
obstacles, have been implemented to enhance obstacle avoidance. The improved APF method
has been evaluated through simulations, demonstrating enhanced trajectory optimization and
obstacle avoidance for both single and multiple UAVS.

Furthermore, noteworthy contributions by other researchers include Atamanchuk A. V. [3],
Fomin 1. 1. [4], Tupytsyal. M., Kryvonos V. M., Kibitkin S. O., Ivashchuk L. A.,
Belivisov A. O.[5], Oleksenko O. 0., Avramenko O.V., Fedorov A. V., Snitsarenko V. V.,
Chernavina O. Ye. [6], Kartashov V. M. [7], Nekhin M., KanevskyiL., Myronchuk Yu. [9],
Wong S. Y., Choe C. W. C.,Goh H. H., Low Y. W.,,Cheah D. Y. S., Pang C. [10], You H. E. [11],
LinC., HanG., Qi X, dulJ, XuT. Martinez-Garcia M. [12], Elghitani F. [13], Simo A.,
Dzitac S., Dzitac I., Frigura-lliasa M., Frigura-lliasa F. M. [14], Deng Y., Zhang H.,
Chen X., Fang Y. [15] and many others.

2. CALCULATION METHODS

The objective of this work is to develop a method for automating the control and
trajectory planning of multiple UAVs using swarm intelligence and edge computing.

The adaptive PSO algorithm serves as the foundation for the swarm intelligence
approach to multi-drone operations. The original PSO formula for updating particle velocity
and position is modified to incorporate a variation strategy from Differential Evolution (DE),
enabling drones to dynamically adjust their trajectories:

1 = vk + gy (p; — x5) + €1a(g — %) @)

v
xf = xf 4 pftt (2)
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where v¥ is the velocity of the particle i on iteration k, w is inertia weight which is dynamically
adapted by means of w(k) = Wmex — (Wmax — Omin) % c1,Cc, — are learning factors that are

adjusted on the basis of iteration ,r;, k, — are random values from 0 to 1, p; — is the best known
position of the particle i, g— is the best global position.

To introduce the mutation strategy mediated by Differential Evolution (DE), the
velocity is updated using the formula:

v{‘“ = vik + F X (pi — xlk) + F(xr1 = Xr,) 3

To optimize the trajectory and energy efficiency of a multi-drone swarm, the fitness
function incorporates multiple objectives, expressed as:

f) =wify + wafe + wafeo (4)

f+ minimizes the total travel time for all UAVs, f, accounts for energy consumption calculated
using the kinetic energy equation E = %mvz feo1 — 1S @ penalty function that prevents collisions

between drones w;, w,, ws— are weights that determine the priority of each objective.

The integration of an intelligent sensing network using wireless sensor networks (WSN)
enhances the autonomy and adaptability of UAVS. This ensures accurate localization and real-time
communication between drones.

fn=R-MN- ) (V= V)? ©)

R — is the rotation matrix representing the drone's orientation, MN corresponds to the number
of anchor nodes, and,V; — are the position vectors of the unknown nodes.

The approach based on DRL (Deep Reinforcement Learning) has been integrated with the
PSO algorithm to optimize the offloading of computational tasks to UAVs acting as edge nodes.
The proposed method employs a multi-agent DRL structure, where each UAV operates as an
independent agent, learning optimal strategies for data offloading and task allocation through a
combination of local observation and communication with neighboring drones. The reward
function Ry for each UAV agent has been designed to maximize the overall system utility while
minimizing the risks of data interception and is calculated as follows:

Ri=vy: (Usys — Peaw) (6)

where Uy, s represents the system utility derived from efficient task offloading and computation.

P,,, indicates the probability of data interception. y — is the discount factor that balances
immediate and future rewards. The DRL algorithm adjusts the UAV's position and transmission
power to ensure secure communication, even in environments with significant interference or
potential eavesdropping threats.

The implementation of autonomous control based on swarm intelligence is carried out
using Python, integrating the PSO algorithm with adaptive learning and perception capabilities,
as shown in Figure 1.

Edge computing in operations with multiple drones requires a multi-level architecture
where UAVs equipped with edge computing capabilities form a hierarchical communication
network with ground loT devices and central servers. This architecture enhances data processing
efficiency, reduces latency, and improves decision-making accuracy. The communication model is
presented in the form of:
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Se = a;Tipc + aZToff + a3k, (7)

S¢ —is the total efficiency of the system. T, is the local computation time. T, ¢ represents the
offloading time to the UAV. E,, denotes the energy consumed by the UAV during computations.
The weights a4, a,, @3 are adaptively adjusted based on real-time performance metrics,
enabling the swarm to optimize energy consumption, task execution time, and communication
efficiency.

By utilizing edge computing nodes, task delegation, sensor data processing, and real-
time decision-making are achieved. The onboard edge node of each UAV processes
environmental data, updates its trajectory, and communicates with neighboring drones to adapt
to changing task requirements.

Umperk pumpy, as np

from skleam. feature, selection import SelectkBest, £ classif

dsf adaptive.pso. feature, selection (X, v, num,_particles=30, iterations=100):
num, features = X shape([1]
parficles= np random randint(2, size=(num, particles. num_features))
veloeities = np.zeros((num particles, num, features))
personal best positions= particles.copy()
personal best_scores= np.zeros(num particles)

foriin range(num,_particles):
selected, features= particles[i]
selected X =X][-, selected features—
if selected. X shape[1]—0:

for iteration in range(iterations):
for1in range(num, particles):
velocitiesli] = 0.5* (personal best_positions[i] - particles[1]) + 0.3
*np.random rand(num _features)
parficles [1] = npwhere (np.random rand(num,_features) < veloctties[], 1, 0)

seare = SelectKBest (score, func=f clagsif. k="al1") fit(selected X, y).scores, .sum(
i score > personal, best scores(i]-
personal_best_scores[1] = score
personal best positions[i]= particles [i]
best, particle index =
mmmmwm [Q%B%SL.J&Q@K] =1)[0]

Figure 1. Implementation of PSO in the context of multi-drone operations

To further optimize multi-drone operations, UAVs equipped with edge computing
leverage adaptive Particle Swarm Optimization (PSO) with embedded intelligence. The
velocity update formula (1) integrates real-time edge processing feedback, ensuring that each
UAV rapidly adapts to environmental changes:
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k+1

v = a)v{‘ + clrl(pi — xl") + czrz(g — xlk) + Ef 9)

where E; represents the feedback from edge nodes, indicating real-time adjustments required

for task execution, obstacle avoidance, or energy optimization. Figures 2—-3 demonstrate the
integration of the edge computing concept into the multi-drone PSO algorithm.

class Drone EdgeNode:
def_ init (self. position. energy. progessing..capacify):
sclf.pesition = position
self.energy = energy.
self. processing cAPACILY, = PIOCsssIng . capacity,
self-task_quene =[]

del prossssotask(selt, task):
i self.energy > task.energy, requirement and len(self task qusug)
< self.progsssing. capasiy;
self task _queuc.append(task)
self.gnergy. - = task.energy, requirsment,
rehwon, True # Task gssigned successfully
rsiwn False # Insufficient energy. or, capacity.

defupdate position(self, syyarm position. edge. feedback):
inertia_weight = 0.5 # Adaptive value based on edge feedback
new_velosity = inertia svsight * self.yelogity + edgs. fesdback
self.position += new..vslogity

Figure 2. DroneEdgeNode class

The DroneEdgeNode class represents a UAV equipped with edge computing
capabilities. This class includes methods for task processing (process_task) by checking energy
levels and processing power availability to ensure efficient execution and methods for a drone
position updating (update_position) based on feedback received from the swarm and the edge
computing network, facilitating adaptive adjustments in dynamic environments.

This class encapsulates both computational and positional functionalities essential for
coordinated multi-drone operations within the PSO-Edge framework.

def offlead. task. to. edge(swamm. task):
best.nods = None
max,_ reward = -float('1n0)
for drong in swamm:
expseted. reward = drone.predict reward(task) # DRL-based prediction
1L expested reward > W and drone.procsss. fask(task):
max_ reward = expseted reward
best. .nods= drone
i bestnode

Figure 3. Offload_task_to_edge function
The offload_task to_edge function demonstrates how tasks can be offloaded to the

most suitable drone using Deep Reinforcement Learning (DRL). The function iterates through
the swarm of drones, predicting the expected reward for offloading a task to each drone. It
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selects the drone offering the highest reward while ensuring the task can be processed, thereby
optimizing task allocation within the swarm.

3. RESULTS AND DISCUSSION

To evaluate the proposed PSO-Edge method compared to other machine learning
methods (Random Forest and SVM), an experiment was conducted in a controlled simulation
environment. The objective was to assess task completion efficiency, energy consumption,
communication latency, and task completion accuracy.

The experiment involved a simulated environment where UAVs were required to
monitor data and perform tasks over a 200 x 200 m area. Metrics evaluated included task
execution time, energy consumption, communication latency, and task execution accuracy. The
hardware setup included an Intel Xeon Gold 6248R processor, 128 GB of RAM, and an
NVIDIA Tesla V100 GPU. The simulation was conducted using Python 3.8 with appropriate
machine learning libraries.

Figure 4 shows that the PSO-Edge method significantly outperformed other methods,
reducing task execution time to 42.1 minutes, compared to 62.3 minutes with Random Forest
and 58.7 minutes with SVM.

Figure 4. Task Completion Efficiency

Figure 5 demonstrates that the PSO-Edge method achieved the lowest energy
consumption-28.9 Wh per task—compared to Random Forest (37,8 Wh) and SVM (34,5 Wh).

i —

Figure 5. Energy Consumption per Task
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As shown in Figure 6, the PSO-Edge method demonstrated the lowest communication
latency (0.15 seconds), exceeding Random Forest (0.35 seconds) and SVM (0.28 seconds),
indicating more efficient data transmission.

Figure 6. Communication Latency

Figure 7 demonstrates that the PSO-Edge method achieved the highest task execution
accuracy (96%) compared to Random Forest (83%) and SVM (87%).

PSO-Edge
100

SVM RF

Figure 7. Task Completion Accuracy

The results confirm that the proposed PSO-Edge method outperforms traditional
machine learning methods (Random Forest and SVM) in terms of task competion efficiency,
energy consumption, communication latency, and task accuracy. These improvements highlight
the advantages of integrating edge computing with the PSO algorithm, making it a reliable
solution for multi-UAV operations.

4. CONCLUSIONS

In summary, the adaptive PSO-Edge algorithm demonstrates significant advantages
over traditional machine learning methods, such as Random Forest and SVM, in optimizing
multi-UAV operations. By integrating Differential Evolution strategies and deep reinforcement
learning, the proposed method achieves superior performance in task execution time, energy
efficiency, communication latency, and accuracy. These findings validate the effectiveness of
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combining swarm intelligence with edge computing, establishing the PSO-Edge approach as a
highly efficient solution for dynamic and resource-intensive UAV-based applications.
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THTETPAIIISI POMOBOI'O IHTEJIEKTY TA KOPJJOHHUX
OBYUCJIEHB J1JIsI ABTOHOMHOI POBOTH KIJIBKOX JIPOHIB

Jleonin Pomaniok?’; Irop Unxipa®; Fanuna Tymnaiinan?; Auapiii Loaosko?

Tepnoninbcokuu Hayionanrbhuu mexuivHuu ynigepcumem imeni leana 1lynios,
Tepnoninw, Ykpaina
TepHoninbcoKkuil HAYIOHAILHULL NE0A202IYHULL YHIBepCUmem
imeni Bonooumupa I'namiwoka, Teproninw, Ykpaina

Peztome. Ipedcmaeneno aoanmuenuii areopumm PSO (Particle Swarm Optimization — onmumizayis pois
YACMUHOK) AK OCHOBY 07151 ni0X00y 00 poLiogo2o iHmenekmy 6 onepayisax 3 Kinokoma BITJIA. Tpaouyitiny ¢popmyny PSO
Ol OHOBNEHHS WBUOKOCMI MA NOJIONHCEHHs YACTNUHOK OYI0 3MIHEHO, wob GKmIouumu cmpamecioo sapiayii 6io
Differential Evolution (DE), wo dossonsic BIIVIA ounamiuno xopucysamu ceoi mpackmopii. Inmeapayis 2mb6oko2o
naeuanns 3 niokpiniennsm (DRL) dooamkoso nideuwye 30ammicms moOeni onmumizyeamu po36aHMAaNCeHH s 3a60aHb
i posnoodin obuucnens, capanmyiouu, wjo BILJIA @ynkyionyrome sk egexmusni nepugpepitini eysmu. Ilposedero
eKCnepUMEeHMAalbHe OYIHIOBANHS 3anponoHosano2o memoody PSO-Edge nopisusno 3 inuwwmu memooamu mawunnozo
Haeuanhsi, 30kpema eunaokosum aicom (RF) i memooom onoprux eexmopie (SVM). Excnepumenmanvia ycmanoska
BKIIOUANA CUMYsYitiHe cepedosuuye, Oe BITJIA Oyno nocmasieno 3a80anHs KOHMPOIOBAMU OAHL MA BUKOHYEAMU MICIT
HaO eusHayenolo mepumopicio. Anapamue 3abesnevenns exmoyano npoyecop IntelXeonGold 6248R, 128 I'h
onepamuenoi nam smi ma epaghiunuti npoyecop NVIDIATeslaVI00 iz modeniogannsm, 6UKOHAHUM 3a OOROMO2OIO
Python 3.8. 3anpononosanuii ancopumm PSO-Edge npodemoncmpysas eucoxy npodykmusnicms 3a KiibKOMA
HOKA3HUKAMU: CKOPOYEHHsL YaCy GUKOHANHS 3a80anisi Ha 42,1 xeununu nopisusno 3 RandomForest i SVM, docsienennst
HAUHUIICU020 enepaocnodcusanns Ha 3asdanns— 28,9 Wh; demoncmpayis epexmusnozo 36's13ky 3 HaiMeHULOW
sampumxoro 6 0,15 cekynou, oOocsenenns Hauguwoi mounocmi GuKkoHamms 3aedamus 6 96%. Pesynemamu
niomeepoicyroms, ujo memoo PSO-Edge nepesepuiye mpaduyitini nioxoou MauunHo20 HAGYAHHS 30 eeKMUSHICIIO
BUKOHANMSL 3A80AHb, EHEPLOCNONCUBAHHAM, 3AMPUMAHHAM 38 A3KY ma mounicmio. Lle niokpecnioe nepesazu inmezpayii
nepuchepiiinux obuuciens 3 areopummom PSO, cmeoprorouu 1io2o sik Haditine supiwienns 0 onepayili 3 KilbKoMa
BIIVIA. Ompumani pe3ynomamu Maioms 3HAYHI HACTIOKU 01 onmumizayii dooamkis na ocrosi bIIJIA, ocobauso
cepedosuuax, Wo euMazaioms OuHamMiuHol adanmayii ma epexmusHo20 YRPAasIiHHsL PeCyPCAMU.

Knwouogi cnosa: asmonomna onmumizayis mpackmopii, 2iuboxke Haguanus 3 NIOKPIinaeHHAM, Oa2amoazenmui
KOPOOHHI 00YUCTIEHHSA, NOKAZHUKU YHUKHEHHL 3IMKHEHb, ONPAYI08AHHS OGHUX Y PeAIbHOMY YdCi, A0ANMUeHa MOOYIAYis
enepelii.
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