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Summary. The paper suggests the usage of special modified finite elements, which account for the square-
root singularity of stress and strain fields at the crack top and allows high-precision evaluation of stress intensity
factors. These elements are introduced into the programs of finite element method for the analysis of plate
problems of termoelasticity of anisotropic solids containing cracks. The comparison is done between the known
analytic solutions and the results obtained using special finite elements and modified finite elements. High
accuracy of the results obtained with the usage of modified special finite elements has been proved.
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Problem setting and publications overview. The problem of the destruction of
materials and structures is one of the important problems of the mechanics of the deformable
solid body. Recently, due to insufficient reliable assessment in predicting the emergence and
spread of cracks in modern designs interest in the study of these processes has increased [1].
However, despite the extensive information about various destruction phenomena, its
mechanism is not fully known and there is not a large number of experimental studies available,
particularly concerning the destruction of anisotropic bodies. This is due to the complexity and
high cost of such experiments, and the inability to examine the processes of emergence and
further development of cracks.

The most effective method to be used for this analysis is the method of numerical
experiment. Numerical methods study design of structures with and without cracks of varying
geometry of individual items and change in terms of loading in the current node. This method
of analysis has become possible due to wide practical use of numerical methods for calculating
the stress-strain state (SSS) designs, including finite element method (FEM).

There are several approaches to build finite element models of design with such
damages as cracks. The first partition uses the entire study area with conventional finite element
mesh with a significant increase towards the top of damage. The second is to use special
elements surrounding the top of the damage and provide an opportunity to consider features of
strain distribution near the damage [2 — 4].

Methods for determining the durability of cracked bodies requiring prior calculation of
stress intensity factors coefficients (SIC), which are usually prior unknown. In addition, the
nature of stress changes is given (root feature), so it is difficult to get without taking into account
theoretically grounded concordant results. The most correct approach is to use special items
which model singularity of stresses and strains in the crack top (singular elements). These
elements reflect features of SSS in the vicinity of the crack peak.

These elements are called special as in calculating the stiffness matrix different from the
usual tool for moving shapes containing proportional member. They also differ from
conventional FE because their intermediate nodes are shifted by a quarter-length side towards

the crack top. These elements may have features like O (r™*'?) for strains, quite well describe
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the change of stresses and displacements at the top of the crack, are fully compatible with
conventional quadratic elements and reflect the movement of the body as a whole. Moreover,
theorems on convergence solution close to the exact as for common elements remain valid.

In this paper, the analysis of stress-strain state in the vicinity of the crack top in metal
plate using analytical models and methods based on the use of special finite element (FE),
describing the features of the stress field at the crack top has been conducted.

Based on modern concepts of SSS, in case of tension cracks and deformations in the
vicinity of the top the following general correlations are described [5]:

o :% i(0), & :%quw) (1)

where o, &; — strain tensor components;

K — stress intensity factor, defined as K;, Ky, Ky s for appropriate modes of destruction;
r, & —polar coordinates beginning in the crack top, which is located along the axis x;

f,(6), q;(0) — universal normalized functions.

Displacement should look like u; = LS /LE (6),
G \2rx

where G — shear modulus; F, (&)- universal normalized function.

To calculate with the displacement method we should further define the location of the
crack top. In this case, based on the asymptotic formulas obtained by Irwin, SSS is determined
in the vicinity of the crack top and SIC:

first mode (normal lead) singular stress field near the crack has the form

°11 K 1-sin(@/2)sin(36/ 2)
O1p (= le_cos(g) sin(@/2)cos(36/2) (2)
G2 7 1+sin(0/2)sin(30/2)

and the corresponding displacements

{ul} K, [ r j1/2 cos(0/2)| k-1+2sin?(6/2) |
®)

U] 2G\2z sin(H/Z)[k +1—2c052(9/2)}

where k =3 — 4v for plane strain, k =(3—v)/ (1+v) for plane stress
for the second mode (shift) singular stress field has the form:

%11 N —sin(@/2)[2+cos(6/2)cos(36/2)]
Ol 1= = cos(@/2)[1-sin(0/2)sin(30/2)] (4)
V2R Gin(012)cos(012) cos(301 2)

and corresponding displacements
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2G (%)

{ul} Ky, ( . j1/2 sin(B/Z)[k+1+Zcosz(6’/2)}
2

u 27 —cos(&/Z)[k—1—25in2(49/2)}

third-mode (longitudinal shear crack) singular stress field is:

0-13 _ Kl” —SIn(H/Z) 5
Oyg| N2zr { cos(6/2) } ©)

and corresponding displacements

12

{ug}= 2%(5} sin(0/2) @)

J —integral

Recognized basic parameters of fracture mechanics and SIC are integral Cherepanov —
Rice’s (J — integral), which are calculated based on direct and energetic techniques with
synonymous connection within linear fracture mechanics:

ou
J :é(Wdy -T axdsj (8)

where G — closed loop that goes through anti-clockwise, which limits certain region in the
vicinity of the crack top;

T - stress vector perpendicular to the path G T; = o;;n;;
u — displacement towards the axis x;

ds — circuit element G;
W — the energy of deformation w =w (x,y)=W (&)= Tgijdgij :
0

i & i~ components of the stress tensor.

The surface to calculate the J — integral in the neighborhood of an arbitrary point field
cracks will consist of contour (Fk) and two side components (F1 ta ) [6]:

3= 5 (9rg + IR IR ©)

In casde of a temperature field, invariant integral expression is the following [6]:

* oT 1
J =1 +éaaij5ij67dSK (10)

where J — integral form (8).
Connection SIC of magnitude of J — integral in linear deformation conditions is
determined by the formula [7]:

2
3K (12)
E
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where: k =1 under the plane stress conditions i k =1—v2 for plane strain; £ — Young's
modulus.

At a constant temperature T in the vicinity of the crack connection between displacement
and Ky describes dependency [6]:

Ky [r i
U =— |[—F (0) + akTy' (12)
2G \ 2«
where G — shear modulus;
a = a — linear expansion coefficient in the case of plane stress,
a =a(l+v) for plane strain:

.0 20 .0 .26
F(6)=sin—| k+1-2cos™"— |; F,(8)=sin—| k -1+ 2sin™ —
1(0)=sn? ) a(0)-an?[ )

where k =3 — 4y for plane strain, k = (3—v) / (1+ v) for plane stress.

Singular finite element. In numerical modeling of processes of destruction for the exact
value of stress intensity important factor is to determine local displacement field efforts and
cracks in its top. To construct the displacement field at the crack top and its geometry Williams
M.L. [7] used the dependence

1 3

u, =(r,0)=a,+b (0)r2+c (0)r+d, (6)rz+L (13)
k=12,...

where r distance to the crack top 6 corner crack propagation as shown in Figure 1.
So crack width is defined as

1 3

Au, = Ab, (0)r2 +Ac, (0)r+Ad, (8)r? +L (14)
k=12,..
In the finite-element modeling to determine SIC cracks Henshell R.D. and Shaw K.G.

[8] and Barosum R.S. [9] suggested the use of a standard approach, combined with displacement
of finite element nodes at the top of a quarter crack length element.
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Figure 1. Symbols for the system of coordinates (x1, X2) and (r, ) crack geometry
Use of \r — singular element is important because when you reach a boundary change,
its modifications occurs. Researchers Gray L.J. and Paulino G.H. have shown that regardless
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of geometry or boundary conditions, linear coefficients according to Williams M.L. have the
compliance:

¢ (7)=c.(-n) (15)

where Au, (r) describes the movement of cracks. Since the linear factor disappears from the
expression determining crack width along its distribution

Au (r)=u, (r,7)—u,(r,—7) (16)

Standard \r — singular element does not comply with the limits that were given in
equations (15) and received in equations (16). So to get an accurate assessment of SSS in the

vicinity of the crack top linear rate Au, (r) should approximate to zero. Obtaining important

and interesting interpretation of analytical results in fracture mechanics of solids is still
unknown.
Modified singular finite element. Two-dimensional Vr — a singular element that is

shown in Figure 2, is based on the use of six-nodal triangular element. To te[0,1]crack at the

top of the tool shapest = 0 for elements along the crack boundary (corresponding units 1, 2 and
4) takes the form

o (t)=(1-t)(1-2t)
o, (t)=t(2t-1) (17)
Dy (t) 4t (1_t)

Since at the crack top (Aull, Aui) =(0,0), taking into account boundary constraints crack
opening field (use of units 1, 2 and 4) and Au, takes the form:

T(t)=[(%¥) =% (t)+ %0, (1) + X0, (1), V.0, (1) + Y,0, (1) + V.00, (1) ]
Au, (t) = Aufe, (t)+ Au/p, (t) = —(Au? - 4Au) )t + (2407 - 4Au; )t? (18)
Au, (t)

(t

where (x,,y,), (X,.Y,)Ta (X,,y,) coordinates of corresponding node elements — 1, 2 and 4;

= Aulg, (t)+ Ausp, (t) = —(Au] —4Au; )t +(2Au7 - 4Au; )t*

Aukj — nodal values of crack opening in the j th —node.

1
2

I /4 4
I__ -l L -

Figure 2. \r — square-root singular element

As shown earlier [7, 8] when you change the coordinates of a quarter the length of the
item at the top of the crack, the value tis equal (r/ L)“2 , Where L —the distance between nodes
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(x.y,)and (x,,y,). Consequently, a member of the first order Au,, which determines t,

characterizes root feature distance (r / L)“2 . However, the following describes a member t* r/
L. The resulting value makes it possible to more accurately determine SIC. Thus the function

forms for units 2 and 4 ¢, (1), 0, (t), which are shown in equation (19), store the parameters
3/2

t =+/r and carry out a substitution of (r/L)"*by (r/L)".
¢72(t)=t(2t—1)+2t(1—t)(1—2t)/3=1(4t3—t)
3
_ . (19)
go4(t)=4t(1—t)—4t(1—t)(1—2t)/3:—§(t3—t)

Modification of units 2 and 4 reveals the root feature t*> =r without losing the degree
of interpolation, ie

2.(0)=0, 7, (112)=0, 5,(1) =1 £,(0)=0, p,(1/2)=1 ¢,(1)=0 (20)

In addition, as shown in Fig. 3, the modification (replacement) remains unchanged for
form functions g, (t), ¢, (t) that are used in the calculation of crack opening in the equation
(18).

1.5

0.6 -

0.0 0.5 1.0

Figure 3. Standard ¢, (), @, () and modified ¢, (t), ¢, (t) shape functions

Calculation of SIC will hold correlation method using Vr — singular elements (standard
and modified). However, it should be noted that the assessment of quality Vr — singular element
method is done using correlation movement. The main dependence for SIC for joint action of
several events, that is, K; and Kz with the use of correlation bias:

(21)

where Au, (r) — crack opening in a system of coordinates that matches the top cracks;

G, v —shear modulus and Poisson's ratio respectively;
k =3 —4v for plane strain, k =(3—v) / (1+ v) for plane stress.

Using a modified Vr — a singular element to the equation (19) we obtain
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Au, = AU g, (t)+Auf @, (1) = g(Auf — 280 )t + %(SAUC - Au}) (22)

Using (22) and (21) taking into account conditions t =+/r / L

G . ’27[
KI :3(k+1) Irm T(8AU§_AU22)
G . 2
K, = lim, == (8Au’ — AU?
! 3(k+1)r»o\/ r (Bau; ;)

Numerical example. We consider boundless environment (square with sides that are
ten times bigger than the length of the crack) with a straight insulated crack of length2a and
inclined to the axis ox,at an angle,. At infinity uniform heat flux effect with vector
components of such density: h” =0,h; =h*. Tensions disappear at infinity.

Further we explore the stress intensity factor for the crack plane stress when the material
is isotropic medium (Poisson's ratio 0.25) or anisotropic with the following properties: E,, =
55 GPa, E,=21GPa, v,=025  G,=97GPa, @«,=6,310°K" a,=2-10"° K™,
k, /k,, =3,46/0,35. We model sotropic material with weakly anisotropic perturbations from
0.1% shear modulus.

Table. 1 presents values normalized SIC at the crack left top (the right side of CIN with
opposite sign), depending on its angle of inclination compared to the data of the analytical
solution. Normalization factor is K, = azaE,a,,h" /k, . The model uses 400 finite elements.

Table. 1 shows good consistency of numerical results with analytical data in the case of
isotropic and anisotropic material. The relative error does not exceed 0.2% for the modified
special items that certifies the authenticity of the results. Conventional special items give a little
more calculation error.

(23)

Table Ne 1.
SIC angled crack in an infinite plate

¥ » Tpai 0 | 30 45 60 75

Isotropic material

K, /K, , TOU4HO 0,2500 0,2165 0,1768 0,1250 0,0647

K, /K, , MCE 0,2515 0,2210 0,1797 0,1284 0,0689

K, /K, ,MCE, mo. enem. 0,2505 0,2169 0,1771 0,1253 0,0648
Anisotropic materia

K,/K, , TO4HO 0,0000 0,3279 0,3091 0,1893 0,0566

K,/K, , MCE 0,0000 0,3296 0,3105 0,1916 0,0588

K,/K, , MCE, moz. enem. 0,0000 0,3284 0,3097 0,1896 0,0567

K, /K, , TO4HO 0,3657 0,5060 0,5677 0,5107 0,3058

K,/K, , MCE 0,3723 0,5139 0,5784 0,5126 0,3103

K, /K, , MCE, moz. enem. 0,3664 0,5069 0,5687 0,5116 0,3063

Conclusions. The proposed method of determining the SIC with modified special finite
elements can be used as a basis for the development of algorithms and numerical solution
schemes corresponding boundary problems using variational methods. The resulting value is
the source for the iterative construction of two-dimensional and one-dimensional mathematical
models of thermomechanics elements of thin-walled structures. The resulting finite element
method found good consistency of research results with known data in the study of structurally
heterogeneous anisotropic bodies with cracks. Thus the proposed algorithms have the potential
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for implementation into application software packages of structural engineering calculation of

heterogeneous anisotropic bodies.
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BUKOPUCTAHHSA CITEHIAJIBHUX EJIEMEHTIB MCE 10
PO3B'SI3YBAHHS 3AJIAU MEXAHIKHA PYHHYBAHHSA

Biktop Komeniok!; ¥Opiii Tynamsisi

Yhyekuti nayionanbrutl mexuiunull yHigepcumem
2Hayionanvuuti yHigepcumem 600H020 20CN00apcmed ma
NPUPOOOKOPUCIYBAHHSL

Peztome. 3anpononosano euxopucmosyeamu cneyianvbii MOOUQPIKOBAHI CKIHUEHHI eleMeHmU, Wo
8PAX0BYIOMb KOpeHesy 0COOaUBIiCMb NOJiA HANPYXCceHb ma oOegopmayii y Gepuiuni mpiwuHu i 0aoms
MOJHCIUBICMb BUCOKOMOUHO20 00UUCTeH S Koehiyienmie inmencusHocmi Hanpysicens. L[i enemenmu 66edeno 0o
KOMRAEKCY Npozpam Memooy CKIHYeHHUX eleMeHmie Ol aHanizy NIOCKUX 3404y MepMONpYICHOCH
aHizomponHux min i3 mpinuramu. 30IUCHEHO NOPIGHAHHA GIOOMUX AHATIMUYHUX OQHUX [3 Pe3yIbmamamu
PO3PAXYHKIG 13 GUKOPUCMAHHAM CNEYianibHUX ma MOOUPIKOBAHUX CKIHUEHHUX elleMeHmis. 3aceioueHo 6UCOKY
MOYHICTNG PO3PAXYHKIG, 30IUCHEHUX I3 3ACMOCYBAHHAM MOOUDIKOBAHUX CNEYIANbHUX CKIHUEHHUX eleMEHMIE.

Kniouogi cnoea: mexaunixa pyunysanns, xoe@iyicum iHMeHCUBHOCMI HANPYIHCEHb, MEPMONPYIHCHICD,
6EPULUHA MPIWYUHU, MOOUDIKOBAHT CKIHUEHHI eJleMeHmiL.
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