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Summary. In many cases, solving optimisation problems and a dynamic optimisation problem, in 

particular is time-consuming. This is due to the long time of calculation of the objective function value. For 

example, during optimisation of the mechanical systems it can be necessary to integrate of the dynamic equations 

of motion in the whole time interval. For this reason, dedicated methods which allow to calculate approximated 

value of the objective function have been elaborated. These methods usually are full optimisation algorithms which 

have embedded methods for calculating of approximated value of the objective function. In this paper new EVCA 

(Evaluating and Caching) algorithm for reduction optimisation calculations time has been proposed. An important 

feature of the presented algorithm is that it can be applied to any nonlinear optimisation methods both gradient, 

non-gradient and stochastic. Presented approach doesn’t need to modify of optimisation algorithms and methods 

which have been used to calculate objective function value. The algorithm uses two mechanisms: estimating of the 

objective function value and caching its values for all calculated earlier points. Such approach allows to effectively 

speed up the optimisation process, especially optimisation of the physical systems. The results of the optimisation 

for the benchmark functions and double pendulum on the cart with using EVCA algorithm have been presented. 
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Introduction. Dynamic optimisation is one of the most common problems which are 

solved for technical systems. Many of the control tasks are formulated as dynamic optimisation 

problem. Solution of such tasks with using classical optimisation methods both gradient, non-

gradient and stochastic can take long time [1]. It can be caused by the complexity of the physical 

model or it can result from necessity of integrating the equations describing the dynamic of the 

system. Due to long time of calculation such approach can’t be appropriate for direct 

implementation in controllers. In order to realize the optimisation calculation in real time it can 

be necessary to introduce some simplification to the model, which can speed up a calculation 

of the objective function. Another approach can rely on the use of optimisation results to train 

an artificial neural network [1, 2, 3]. Such trained neural network is suitable to obtain results in 

real time, but the training process is time-consuming. This is due to collect a series of 

optimisation calculations results which form training set of the neural network. From the above 

it follows that the reduction time of the optimisation process is necessary in order to perform 

calculations effectively. In many engineering problems time of the optimisation can be 

significant reduced by using dedicated algorithm, such as subproblem approximation method 

[4, 5]. In this approach dependent variables are replaced through the least squares fitting 
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approximation process. A constrained problem is formulated into a basic unconstrained 

problem by using penalty functions. The penalized functions are then minimized until the 

convergence is reached or the iterations are terminated. Subproblem approximation method 

possesses the ability to find the global optimum in full design space. Moreover, it offers distinct 

advantages in many engineering problems, combining simplicity, satisfactory accuracy and 

efficiency of computation [4]. In the paper [6] has been concluded that the subproblem 

approximation method is more efficient than the first order optimisation method. The 

optimisation process can be also improved by limiting of the number of time-consuming 

calculations. It can be obtained by estimating the value the objective function with using the 

artificial neural networks or using appropriate regression model [7, 8]. There are also other 

methods which use for example evolutionary algorithm to estimate of the objective function 

value [9, 10]. These methods are based on estimation of the objective function value in the 

whole domain or divide the analysed problem into smaller optimisation tasks which are less 

complicated to solve. 

In this paper new algorithm of reduction optimisation calculations time has been 

presented. The main feature of this algorithm is that it can be applied to any optimisation 

method in order to speed up the optimisation process. Proposed algorithm doesn’t require to 

modify methods of solving nonlinear optimisation tasks and it contains two mechanisms: 

estimating and caching of the objective function values. Such approach allows to effectively 

speed up the optimisation process, especially for physical systems. In the paper description of 

the EVCA algorithm and results obtained with using that algorithm for solving various 

numerical models have been presented. 

Application of EVCA algorithm in nonlinear optimisation methods. In this 

paragraph own algorithm of reduction of the time-consuming calls of the objective function 

have been presented. It can be acheived by replacing exact determination of the objective 

function value by appropriate value which are evaluated or taken from the cache. 

Let us assume  T
dni xxx 1x  is a point in dn  dimensional feasible set calculated 

in current optimisation iteration. Further, let  Tj

dn

j

i

jj
xxx

)()()(

1

)( x  be one from On  points 

in neighborhood of point x  for which objective function value  )()( jj
y x  has been calculated 

in previous iterations. All points from that neighborhood have to fulfil the following condition: 
 

 xx
)( j  (1) 

 

where  xx 
)( j  is Euclidean norm,  

  – defines the acceptable distance between point x  and points taken from its neighborhood. 
 

The main aim of further considerations is to present the methodology for determination 

of exact or estimated value of the objective function in point x . 

General concept of the EVCA algorithm has been presented in Figure 1. It has been 

considered a few cases that can occur during optimisation calculations. In the first case 

(figure 1a) objective function value is neither evaluated nor taken from cache, because the 

number of points On  in neighborhood of point x  is too small. In this case exact value of the 

objective function has been calculated. In the next considered case (figure 1b) the number of 

points in neighborhood of point x  is acceptable. Additionally, if all coordinates of the point x  

satisfy condition: 
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then objective function value can be evaluated using appropriate estimator. Otherwise, exact 

value of the objective function  xy  will be calculated (figure 1c). In the last considered case 

it has been assumed, that there exists point )( j
x  and it satisfies condition: 

 

2

)(  xx
j  (3) 

 

where 2  defines acceptable distance between two points which are very close to each other. It 

can be assumed that objective function value of the point x  is calculated according formulae 

   )( j
y xx  . It means that objective function value can be taken from the cache which 

contains values of objective function for points )()1(
,,

n
xx  , where n  is the number of all points 

for which exact value of the objective function have been calculated earlier. 
 

 
 a)  b) 

 
 c)  d) 
 

Figure 1. Concept of the EVCA algorithm  

● point with known value of the objective function, × point with unknown value of the objective function 

 

General diagram of the EVCA algorithm written in flowchart form has been presented in 

figure 2. In this diagram it can be seen the main loop of the algorithm with the key modules 

(check, get, add). 
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Figure 2. Flow diagram of the EVCA algorithm 

 

Figure 3 shows basic operations and data flow in the module which is responsible for 

source selection of objective function value. The sources can be as follow: 

- cache – value of the objective function will be taken from the cache, 

- estimator – value of the objective function will be evaluated with appropriate estimator, 

- exact value – value of the objective function will be calculated by calling method which 

contains definition of the objective function. 

In the first step the algorithm looks for any point in the cache which is close to 

considered point x . If no point has been found in the cache than it searches appropriate 

neighborhood of point x  which is necessary to evaluate objective function value for this point. 

The algorithm introduces an additional probabilistic factor, which can force exact calculation 

of the objective function value, despite the fulfilment of the conditions required for the 

evaluation. 
 

 
 

Figure 3. Flow diagram of check submodule in EVCA algorithm 
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The next diagram (Figure 4) shows necessary steps during which objective function 

value is taken from the cache or evaluated with using appropriate estimator. 

 

 
 

Figure 4. Flow diagram of cache and estimation of objective function in EVCA algorithm 

 

After each exact calculation of the objective function value in a given point, this value 

is added to the cache according to Figure 5. 
 

 
 

Figure 5. Flow diagram of adding objective function to the cache in EVCA algorithm 

 

Sample possible estimators for evaluations of objective function value have been 

presented in Figure 6. Among the estimators there are weighted average (Figure 6a), artificial 

neural network (Figure 6b), regression functions (Fig. 6 c) and evolutionary estimator (Figure 

6 d) [11]. In this work objective function value has been estimated with using a weighted 

average method. Estimated objective function value can be calculated according formula: 
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where iw  are weights which values depend on distance between )(i
x  and x . 
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 a)  b) 

 
 c)  d) 

 

Figure 6. Schematic representation of objective function evaluation methods 

 

Caching mechanism can have own implementation as dictionary with key value 

elements or dedicated tools such as Memcached [12] or Redis [13] can be used. The main 

advantage of the ready to use tools is the ability to manage the available memory allocation and 

using multiple physical machines connected in a cluster. 

Numerical simulations of benchmark functions. Algorithm of evaluation and caching 

of objective function value has been tested by solving nonlinear optimisation of benchmark 

functions [14]. These functions have known solutions and they are continuous in the feasible 

set. Mentioned functions have either ordinary courses or many local extrema and saddle points. 

Determination of the global extrema is difficult task and it strongly depends on assumed starting 

point [15, 16]. For all analysed benchmark functions dynamic optimisation problem has been 

solved using various algorithms [15 – 19]: 

 Powell Method (PM); 

 Nelder-Mead Method (NM); 

 Variable Metrics Method (VM); 

 Hooke-Jeeves Method (HJ); 

 Classical Genetic Algorithm (GA); 

 Particle Swarm Optimisation (PSO). 

Some of above methods, like classical genetic algorithm and particle swarm 

optimisation, have been taken from a computational intelligence. Other are classical gradient 

and gradientless optimisation methods. In all considered optimisation problems minimum of 

the objective function has been determined. Assumed parameters of the optimisation methods 

have been presented in Table 1. 
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Table № 1. 

Optimisation methods parameters 

 

Optimisation method Parameters 

Powell Method (PM) 10
10


PM  

Nelder-Mead Method (NM) 10
10


NM  

Variable Metrics Method (VM) 10
10


VM  

Hooke-Jeeves Method (HJ) 

1
10


HJ  

3
10  

1500max N  

Classical Genetic Algorithm (GA) 

30GAN  

7.0Cp  

2.0Mp  

50max N  

Particle Swarm Optimisation (PSO) 
10PSN  

50max N  

 

where: PM  – the fractional tolerance, 

NM  – fractional convergence tolerance, 

VM  – gradient convergence tolerance, 

HJ  – iteration accuracy, 

  – initial iteration step, 

maxN  – maximum number of iterations, 

GAN  – number of individuals in population, 

Cp  – crossover probability, 

Mp  – mutation probability, 

PSN  – number of particles in the swarm. 

 

In the case of optimisation with application of genetic algorithms it is assumed real-

number representation of genes in chromosomes and the following genetic operators have been 

used [11]: natural selection, arithmetical one-point crossover, in which a new chromosome is a 

linear combination of two vectors and non-uniform mutation. 

Easom's function is first analysed function (Figure 7). This function is described by 

formulae: 
 

     22
2

1
2121 coscos,

 


xx
exxxx  (5) 

 

It has only one global extrema obtained for 5,0 21  xx  which equals   0, 21  xx  in point 

 21 xx .  
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Figure 7. Easom's function 

 

Results of nonlinear optimisation task have been summarized in Table 2. It can be seen 

that evaluating and caching mechanisms have been often used for stochastic optimisation 

methods like GA and PSO. These mechanisms are less important for classic algorithms of 

nonlinear optimisation. Analysing the obtained solution, it can be concluded that only two 

methods have been determined a solution different than the global optimum. It can be due to an 

incorrectly selected starting point. Other methods have been determined the solution close to 

the optimal point. 
 

Table № 2. 

Result of simulation for Easom's function 

 

Method Cn  En  n  [%]Cw  [%]Ew  opt
x1  

opt
x2  ),( 21

optopt
xx  

GA  1208 399 2500 48.320 15.960 3.141 3.140 0.000002434 

NM 2 37 2692 0.080 1.480 3.141 3.141 0.000000001 

PM 19 17 2775 0.760 0.680 1.305 1.305 0.999918898 

HJ 4 21 2906 0.160 0.840 3.141 3.141 0.000000000 

VMM 1 0 3911 0.040 0.000 1.017 1.017 0.999966802 

PSO 59 442 6959 2.360 17.680 3.141 3.141 0.000000000 

 

Second analysed function has been axis parallel hyper-ellipsoid function (Figure 8), 

which written in the following form: 
 

  2

2

2

121 2, xxxx   (6) 

 

It has only one global extrema obtained for 5,0 21  xx  which equals   0, 21  xx  in point 

021  xx . 



The proposal of the optimisation time reduction algorithm 

 

106 ……………………………………………………………...ISSN 1727-7108. Scientific Journal of the TNTU, No 2 (82), 2016 

 
 

Figure 8. Axis parallel hyper-ellipsoid function 

 

Results of optimisation obtained with various nonlinear optimisation algorithms have 

been shown in table 3. Analysing the results, it can be concluded that PSO and GA method use 

most frequently estimating and caching mechanisms. It can be noted that usage of caching 

mechanism for GA method is over 50%. In the case of PSO method usage of caching 

mechanism is negligible, but number of evaluations is more than 30%. Optimal solution for 

analysed benchmark function has been correctly determined by all optimisation methods. 
 

Table № 3. 

Result of simulation for axis parallel hyper-ellipsoid function 

 

Method Cn  En  n  [%]Cw  [%]Ew  opt
x1  

opt
x2  ),( 21

optopt
xx  

GA  1402 0 2500 56.080 0.000 -0.004 0.0002 0.000016844 

NM 3 44 2707 0.120 1.760 2.93e-5 5.83e-6 0.000000001 

PM 58 65 2891 2.320 2.600 1.25e-5 0.0 0.000000000 

HJ 3 38 3027 0.120 1.520 1.56e-5 7.83e-5 0.000000000 

VMM 1 25 3067 0.040 1.000 1.67e-6 8.56e-7 0.000000000 

PSO 32 813 6103 1.280 32.520 9.31e-7 2.05e-7 0.000000000 

 

Another considered function has been Rosenbrock’s valley (Figure 9), which is 

described by the following formulae: 
 

     21

22

1221 1100, xxxxx   (7) 

 

It has only one global extrema obtained for 2,2 21  xx  which equals   0, 21  xx  in 

point 121  xx . 
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Figure 9. Rosenbrock’s valley 

 

Analysing the results, presented in the Table 4, it can be concluded that usage of 

evaluating for all considered optimisation methods is small. It can be also noted that usage of 

caching mechanism for GA method is over 50%. This algorithm gives the least accurate 

solution in relation to other methods. However, this is a feature of genetic algorithms which can 

point the area where the global solution is located. 
 

Table № 4. 

Result of simulation for Rosenbrock’s valley 

 

Method Cn  En  n  [%]Cw  [%]Ew  opt
x1  

opt
x2  ),( 21

optopt
xx  

GA  1356 0 2500 54.240 0.000 0.926 0.843 0.028491650 

NM 13 48 2719 0.520 1.920 1.000 1.000 0.000000000 

PM 19 7 2758 0.760 0.280 0.999 0.999 0.000000000 

HJ 4 8 2812 0.160 0.320 1.000 1.000 0.000000000 

VMM 1 7 2823 0.040 0.280 1.000 1.000 0.000000000 

PSO 0 60 5865 0.000 2.400 1.000 1.000 0.000000000 

 

The last tested function has been Rastrigin’s function (Figure 10) which can be written 

as follow: 
 

     2

2

21

2

121 2cos102cos1020, xxxxxx    (8) 

 

It has only one global extrema obtained for 2,2 21  xx  which equals   0, 21  xx  in 

point 021  xx .  



The proposal of the optimisation time reduction algorithm 

 

108 ……………………………………………………………...ISSN 1727-7108. Scientific Journal of the TNTU, No 2 (82), 2016 

 
 

Figure 10. Rastrigin’s function 

 

This function is the most difficult to solve from among all analysed functions. It has 

many local extrema which can be a big obstacle for the classical algorithms of nonlinear 

optimisation. Results presented in the table 5 confirm this hypothesis. Only VMM and PSO 

method correctly pointed the global minimum. Usage of evaluating and caching mechanisms is 

similar to previous analysed benchmark functions (about 50%). Value of the objective function 

obtained from GA method is close to global minimum, but its coordinates show that it is only 

local extrema. 
 

Table № 5. 

Result of simulation for Rastrigin’s function 

 

Method Cn  En  n  [%]Cw  [%]Ew  opt
x1  

opt
x2  ),( 21

optopt
xx  

GA  1404 0 2500 56.160 0.000 -1.326 -0.009 0.018753945 

NM 3 71 2748 0.120 2.840 0.995 0.995 1.989918232 

PM 25 30 2841 1.000 1.200 0.995 0.995 1.989918114 

HJ 4 28 2945 0.160 1.120 0.995 0.995 1.989918119 

VMM 1 0 2956 0.040 0.000 0.000 0.000 0.000000000 

PSO 32 692 5991 1.280 27.680 -2.54e-6 -3.26e-6 0.000000000 

 

Usage of evaluating and caching mechanisms for all considered functions is negligible 

in the case of classical gradient and nongradient nonlinear optimisation methods. This usage is 

considerable when optimisation problem is solved with using stochastic methods. According to 

the authors a EVCA algorithm can make a big difference in the case of optimisation of physical 

systems, for which a time of the objective function calculation can be long. For example, 

mechanical systems can need to integrate dynamic equations of motion in the whole time 

interval when the objective function is determined. In order to prove this hypothesis, in the next 

chapter results of numerical simulations of the double pendulum on the cart have been 

presented. 

Numerical simulations of physical system. Pendulum systems are often used as 

examples for highly nonlinear underactuated mechanical systems. Stabilization of the 

pendulum is still a challenging problem and can be used to show the effectiveness of control 
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systems in analogy with the control of many real systems. It can also be used for the verification 

of the designed control systems or for control education in laboratories. Researchers have been 

analyzing the stabilization of single and multiple pendulum systems in the instable inverted 

position, the swing-up or pendulums mounted on a cart which moves on a horizontal rail [20]. 

The double pendulum on a cart is modeled by two rigid links connected by rotational 

joints which lengths are described as 1l  and 2l . First link is connected with the cart which is 

modeled as rigid body (Figure 11). The general coordinates 1  and 2  describe absolute rotation 

angles of the links. Friction in the joints have been taken into account in order to obtain more 

realistic system. All physical parameters of the links have been presented in table 6. The cart’s 

movement is described by 0x . It has been assumed that mass of the cart is  kgm 40  . 

 

 
 

Figure 11. Double pendulum on a cart 

 

Table № 6. 

Mechanical parameters of the double pendulum links [20] 

 

Name Symbol Unit of measure Link 1 Link 2 

Length 
il  m  0.3560 0.3560 

Distance to center of gravity 
ia  m  0.1800 0.1480 

Mass 
im  kg  0.7750 0.6540 

Moment of inertia 
iJ  2

Nms  0.0224 0.0179 

Friction constant 
id  Nms  0.0050 0.0050 

 

Dynamic equations of motion of the double pendulum on a cart have been derived from 

Lagrange equations of the second kind which can be written as follows [20]: 
 

i

ii

f
q

L

q

L

dt

d












 (9) 

 

where: L  – Lagrangian function, 

 
3,2,1


iiff  – vector of generalized forces which describes influence of external forces 

and forces which result from friction in the joints, 

   T
ii xq 2103,2,1




q  – vector of generalized coordinates. 

Finally, equations of motion can be written in the matrix form [20]: 
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    fqqgqqM   ,  (10) 
 

where:  qM  – mass matrix, 

 qqG ,  – vector of centrifugal and Coriolis forces. 

Optimisation with using EVCA algorithm has been made for two test cases of double 

pendulum on the cart. The aim of the optimisation is to determine the force acting on the cart 

which can restore equilibrium of the system. This force has been modeled by means of spline 

functions of 1st order. For time period )1()(
,




ii
ttt  force acting on the cart can be written in the 

form: 
 

 )()()(
)(

iii
ttbatu   (11) 

 

where )(i
a , )(i

b  are coefficient of the spline functions. Decisive variables in the analysed 

problem are values of the force in interpolation nodes. Vector of decisive variables can be 

written as follow: 
 

 ni XXX 1X  (12) 
 

where:  )(i

i tuX   – value of the force in the time stamp )( i
t , 

n  – number of discrete time stamps (number of interpolation nodes). 
 

Case 1 

In analysed case, link 1 has been tilted so that it lost static equilibrium. Initial conditions 

assumed in case 1 have been presented in table 7. 
 

Table № 7. 

Parameters of the double pendulum on a cart for case 1 

 

Symbol Unit of measure Value 

1  rad  2.1  

2  rad    

0x  m  0 

)(tf  N  0 

 

In order to solve dynamic optimisation problem Powell method and variable metric 

method have been used. During exact calculation of the objective function value dynamic 

equations of motion (10) are integrated in whole time interval. This operation involves a large 

computational effort and is time-consuming. Fourth order Runge-Kutta [16] method has been 

applied to integrate dynamic equations of motion. It has been assumed that course of the force 

)(tu  is described by 10 interpolation nodes. Results obtained from optimisation have been 

shown in Figure 12. 
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a) b) 

 

Figure 12. Courses of rotation angle of first (a) and second (b) link for case 1 

1) before optimisation, 2) after PM optimisation, 3) after VMM optimisation 

 

Results confirm that the optimisation process has been performed successfully. It means 

that magnitudes of rotation angle )(
)1(

t  and )(
)2(

t  are significantly smaller than before 

optimisation. In order to assess influence of evaluating and caching mechanism on results 

obtained from optimisation quantitive indicators have been calculated and summarized 

in table 8. 
Table № 8. 

Result of simulation for double pendulum on a cart for case 1 

 

Method Cn  En  n  [%]Cw  [%]Ew  

PM 318 54 837 37.99 6.45 

VMM 7 228 348 2.01 65.51 

 

Above results confirm hypothesis, that in physical systems mechanisms contained in EVCA 

algorithm are frequently used. In the case of Powell method usage of caching mechanism is 

close to 40%, while usage of evaluating mechanism for variable metric method is over 60%. 

Results show that when the evaluating and caching mechanism are applied, the time of 

optimisation calculations is significantly smaller. Analysing summarized values from the Table 

8 it can be concluded that the time of calculation has been reduced about 45% in Powell method 

and nearly 70% in the case of variable metric method. 
 

Case 2 

In the second case pendulums are in static equilibrium at the initial time, while the 

variable in time external force acting on the cart. Initial conditions assumed during simulations 

have been presented in table 9. 
Table № 9. 

Parameters of the double pendulum on a cart for case 2 

 

Symbol Unit of measure Value 

1  rad    

2  rad    

0x  m  0 
)(tf  N  tsin1010  
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The aim of the optimisation task is to reduce influence of the external force acting on 

the cart, in order to preserve position from static equilibrium for both pendulums. Dynamic 

optimisation task has been solved with using Powell and Hooke-Jeeves method. It has been 

assumed that course of the external force )(tu  acting on the cart is described by 20 interpolation 

nodes. Results obtained for optimisation have been shown in figure 13. 
 

 
 

 a)  b) 

 

Figure 13. Courses of rotation angle of first (a) and second (b) link for case 2 

1) before optimisation, 2) after PM optimisation, 3) after HJ optimisation 

 

Analysing obtained results it can be seen that angles of rotation )(
)1(

t  and )(
)2(

t  are 

constant and both pendulums preserve initial position. In order to assess influence of evaluating 

and caching mechanisms on dynamic optimisation process quantitive indicators have been 

calculated and summarized in table 10. 
 

Table № 10. 

Result of simulation for double pendulum for case 2 

 

Method Cn  En  n  [%]Cw  [%]Ew  

PM 8713 2051 21514 40.50 9.53 

HJ 55 5794 11131 0.49 52.05 

 

Above results confirm again hypothesis, that in physical systems mechanisms contained 

in EVCA algorithm are frequently used. In the case of Powell method usage of caching 

mechanism is close to 40% and usage of evaluating mechanism for Hooke-Jeeves method is 

over 50%. Analysing summarized values from the table 10 it can be concluded that the time of 

calculation has been reduced about 50% for both analysed methods. 

Conclusions. In the paper EVCA algorithm which allow to reduce optimisation 

calculations time has been presented. This algorithm is useful for the problem, in which time 

of calculation of the objective function is long. Analysed algorithm uses two mechanisms: 

evaluating and caching. During optimisation exact values of the objective function are collected 

in the cache. The first mechanism is applied when analysed point lie close to another stored in 

the cache. If such point can’t be taken from the cache, value of the objective function can be 

evaluated with using appropriate estimator. In the paper the results of using mentioned 

mechanisms to benchmark functions and physical system like double pendulum on the cart have 
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been shown. The Tests have been performed with using classical gradient and nongradient 

optimisation methods and stochastic methods like genetic algorithms and particle swarm 

optimisation method. Obtained results show that usage of evaluating and caching mechanisms 

for all analysed benchmark functions is negligible if classical optimisation methods have been 

used. Huge usage of these mechanisms can be seen when the methods from computational 

intelligence have been taken into account. Very interesting results from dynamic optimisation 

have been obtained for double pendulum on the cart. Significant usage of evaluating and 

caching mechanisms have been noted for all considered optimisation methods. When the 

Powell method has been applied, the usage of caching mechanism is nearly 50%. In the case of 

Hooke-Jeeves and variable metric method usage of the evaluating mechanism is over 50%. 

It means that the time of optimisation process for double pendulum on the cart and other 

physical system can be half as long if EVCA algorithm has been applied. 
 

References 

1. Warwas K., Augustynek K. Dynamic optimisation of articulated vehicle motion for control of stability in 

critical situation. IDAACS'2015: 8th IEEE International Conference on Intelligent Data Acquisition and Advanced 

Computing Systems: Technology and Applications: Vol. 1, 2015, рр. 232 – 237. 

2. Warwas K., Augustynek K. An Application of Neural Networks to Control Stability of an Articulated 

Vehicle in Real Time, Information Systems Architecture and Technology: Proceedings of 36th International 

Conference on Information Systems Architecture and Technology – ISAT 2015 – Part I, Springer, 2016, рр. 135-

146. 

3. Anastassiou G. Intelligent Systems: Approximation by Artificial Neural Networks, Intelligent Systems 

Reference Library, Volume 19, 2011. 

4. Zhang J., Zhu H., Zhao C. Combined finite element analysis and subproblem approximation method for 

the design of ultrasonic motors, Sensors and Actuators a Physical 163 (2), 2010, рр. 510 – 515. 

5. ANSYS, Academic Research, Release 11, Help System, Advanced Analysis Techniques Guide, 

ANSYS, Inc. 

6. Chen C., Yeh M. Optimum structural design of composite xylophone bars, CD-ROM Proceedings of 

The Sixteenth International Conference on Composite Materials, 2007. 

7. Patnaik S., Guptill J., Hopkins D. Subproblem optimization with regression and neural network 

approximators, Comput. Methods Appl. Mech. Engrg. 194, 2005, рр. 3359 – 3373. 

8. Lagaros N., Charmpis D., Papadrakakis M. An adaptive neural network strategy for improving the 

computational performance of evolutionary structural optimization, Comput. Methods Appl. Mech. Engrg. 194, 

2005, рр. 3374 – 3393. 

9. Aittokoski T., Miettinen K. Efficient evolutionary approach to approximate the Pareto-optimal set in 

multiobjective optimization, UPS-EMOA, Journal Optimization Methods & Software. The International 

Conference on Engineering Optimization, Volume 25 Issue 6, 2010, рр. 841 – 858. 

10. Mottaez A., Iyer M. Accurate approximation of the objective function for solving the gate-sizing problem 

using a numerical solver, US 8826218 B2, Google Patents, 2014. 

11. Liang K., Yao X., Newton C. Evolutionary Search of Approximated N-Dimensional Landscapes, 

International Journal of Knowledge-based Intelligent Engineering Systems. Vol. 4, 2000, рр. 172-183. 

12. Pandey S. Caching Using Memcached in Open Source Searching: Execution Time and Throughput 

Improvement Using Open Source Key-Value Caching Techniques-Memcached, Lap Lambert Academic 

Publishing, 2015. 

13. Carlson J. Redis in Action, Manning Publications Co., 2013. 

14. Molga M., Smutnicki C. Test functions for optimization needs, 2005, http://www.zsd.ict.pwr.wroc.pl/ 

files/docs/functions. 

15. Pedregal P. Introduction to Optimization, Springer-Verlag Inc., 2004. 

16. Press W., Teukolsky S., Vetterling W., Flannery B. Numerical Recipes 3rd Edition: The Art of Scientific 

Computing, Cambridge University Press, Cambridge, 2007. 

17. Luersen M., Le Riche R. Globalized Nelder–Mead Method for Engineering Optimization, Computers and 

Structures, 2004, pp. 2251 – 2260. 

18. Sivanandam S., Deepa S. Introduction to Genetic Algorithms, Springer-Verlag Berlin Heidelberg, Berlin, 

2008. 

http://www.zsd.ict.pwr.wroc.pl/


The proposal of the optimisation time reduction algorithm 

 

114 ……………………………………………………………...ISSN 1727-7108. Scientific Journal of the TNTU, No 2 (82), 2016 

19. Clerc M. From Theory to Practice in Particle Swarm Optimization, Handbook on Swarm Intelligence. 

Vol. 8, 2010, pp. 3 – 36. 

20. Timmermann J., Khatab S., Ober-Blöbaum S., A. Trächtler, Discrete Mechanics and Optimal Control and 

its Application to a Double Pendulum on a Cart, Preprints of the 18th IFAC World Congress Milano, August 28 – 

September 2, 2011, рр. 10199 – 10206. 

21. Bauchau O. Flexible Multibody Dynamics, Solid Mechanics and Its Applications, Springer Netherlands, 

2011 

 
УДК 004.02 

 

АЛГОРИТМ ОПТИМІЗАЦІЇ СКОРОЧЕННЯ ЧАСУ ОБЧИСЛЕНЬ 
 

Кшиштоф Авґустинек; Корнель Варвас 
 

Університет у Бєльсько-Бялій, Бєльсько-Бяла, Польща 

 
Резюме. В багатьох випадках вирішення проблем оптимізації, зокрема динамічних проблем 

оптимізації, вимагає багато часу. Причиною цього є тривалий період обчислення значення цільової 

функції. Наприклад, упродовж процесу оптимізації механічних систем може з’явитися необхідність 

інтегрування динамічних рівнянь руху протягом усього інтервалу часу. В зв’язку з цим, були розроблені 

спеціалізовані методи, які дозволяють обчислити приблизне значення цільової функції. Ці методи зазвичай 

ґрунтуються на алгоритмах повної оптимізації та містять методи розрахунку приблизних значень 

цільової функції. В цій статті запропоновано новий алгоритм EVCA (оцінювання і кешування), 

призначений зменшити час обчислень під час процесу оптимізації. Важливою особливістю 

запропонованого алгоритму є те, що він може бути застосований до будь-яких нелінійних методів 

оптимізації як градієнтних, так і неградієнтних та стохастичних. Для впровадження запропонованого 

підходу немає необхідності змінювати алгоритми та методи оптимізації, які застосовуються для 

обчислення значень цільової функції. В алгоритмі використовуються два етапи: оцінювання значень 

цільової функції та кешування отриманих значень для всіх попередньо розрахованих точок. Такий підхід 

дозволяє ефективно пришвидшити процес оптимізації, особливо для оптимізації фізичних систем. 

Представлено результати оптимізації для еталонних функцій та подвійного маятника з рухомою 

основою із застосуванням алгоритму EVCA. 

Ключові слова: оптимізація, оцінювання цільової функції, генетичний алгоритм. 
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