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Summary. In many cases, solving optimisation problems and a dynamic optimisation problem, in
particular is time-consuming. This is due to the long time of calculation of the objective function value. For
example, during optimisation of the mechanical systems it can be necessary to integrate of the dynamic equations
of motion in the whole time interval. For this reason, dedicated methods which allow to calculate approximated
value of the objective function have been elaborated. These methods usually are full optimisation algorithms which
have embedded methods for calculating of approximated value of the objective function. In this paper new EVCA
(Evaluating and Caching) algorithm for reduction optimisation calculations time has been proposed. An important
feature of the presented algorithm is that it can be applied to any nonlinear optimisation methods both gradient,
non-gradient and stochastic. Presented approach doesn’t need to modify of optimisation algorithms and methods
which have been used to calculate objective function value. The algorithm uses two mechanisms: estimating of the
objective function value and caching its values for all calculated earlier points. Such approach allows to effectively
speed up the optimisation process, especially optimisation of the physical systems. The results of the optimisation
for the benchmark functions and double pendulum on the cart with using EVCA algorithm have been presented.
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Introduction. Dynamic optimisation is one of the most common problems which are
solved for technical systems. Many of the control tasks are formulated as dynamic optimisation
problem. Solution of such tasks with using classical optimisation methods both gradient, non-
gradient and stochastic can take long time [1]. It can be caused by the complexity of the physical
model or it can result from necessity of integrating the equations describing the dynamic of the
system. Due to long time of calculation such approach can’t be appropriate for direct
implementation in controllers. In order to realize the optimisation calculation in real time it can
be necessary to introduce some simplification to the model, which can speed up a calculation
of the objective function. Another approach can rely on the use of optimisation results to train
an artificial neural network [1, 2, 3]. Such trained neural network is suitable to obtain results in
real time, but the training process is time-consuming. This is due to collect a series of
optimisation calculations results which form training set of the neural network. From the above
it follows that the reduction time of the optimisation process is necessary in order to perform
calculations effectively. In many engineering problems time of the optimisation can be
significant reduced by using dedicated algorithm, such as subproblem approximation method
[4, 5]. In this approach dependent variables are replaced through the least squares fitting
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approximation process. A constrained problem is formulated into a basic unconstrained
problem by using penalty functions. The penalized functions are then minimized until the
convergence is reached or the iterations are terminated. Subproblem approximation method
possesses the ability to find the global optimum in full design space. Moreover, it offers distinct
advantages in many engineering problems, combining simplicity, satisfactory accuracy and
efficiency of computation [4]. In the paper [6] has been concluded that the subproblem
approximation method is more efficient than the first order optimisation method. The
optimisation process can be also improved by limiting of the number of time-consuming
calculations. It can be obtained by estimating the value the objective function with using the
artificial neural networks or using appropriate regression model [7, 8]. There are also other
methods which use for example evolutionary algorithm to estimate of the objective function
value [9, 10]. These methods are based on estimation of the objective function value in the
whole domain or divide the analysed problem into smaller optimisation tasks which are less
complicated to solve.

In this paper new algorithm of reduction optimisation calculations time has been
presented. The main feature of this algorithm is that it can be applied to any optimisation
method in order to speed up the optimisation process. Proposed algorithm doesn’t require to
modify methods of solving nonlinear optimisation tasks and it contains two mechanisms:
estimating and caching of the objective function values. Such approach allows to effectively
speed up the optimisation process, especially for physical systems. In the paper description of
the EVCA algorithm and results obtained with using that algorithm for solving various
numerical models have been presented.

Application of EVCA algorithm in nonlinear optimisation methods. In this
paragraph own algorithm of reduction of the time-consuming calls of the objective function
have been presented. It can be acheived by replacing exact determination of the objective
function value by appropriate value which are evaluated or taken from the cache.

Letusassume x=[x .. x .. x,| isapointin n, dimensional feasible set calculated

in current optimisation iteration. Further, let x =[x® ... x? ... x@] be one from n, points

in neighborhood of point x for which objective function value y» =(x?) has been calculated
in previous iterations. All points from that neighborhood have to fulfil the following condition:

[x? x| <, 1)

where |x -x| is Euclidean norm,
¢, — defines the acceptable distance between point x and points taken from its neighborhood.

The main aim of further considerations is to present the methodology for determination
of exact or estimated value of the objective function in point x .

General concept of the EVCA algorithm has been presented in Figure 1. It has been
considered a few cases that can occur during optimisation calculations. In the first case
(figure 1a) objective function value is neither evaluated nor taken from cache, because the
number of points n, in neighborhood of point x is too small. In this case exact value of the

objective function has been calculated. In the next considered case (figure 1b) the number of
points in neighborhood of point x is acceptable. Additionally, if all coordinates of the point x
satisfy condition:

min x” <x < max x” 2)
je<lng> ! ' je<lng> !
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then objective function value can be evaluated using appropriate estimator. Otherwise, exact
value of the objective function y = o(x) will be calculated (figure 1c). In the last considered case

it has been assumed, that there exists point x and it satisfies condition:
<2 =<, ©)

where ¢, defines acceptable distance between two points which are very close to each other. It
can be assumed that objective function value of the point x is calculated according formulae
y=0(x)=0x?). It means that objective function value can be taken from the cache which
contains values of objective function for points x®,...,x™, where n is the number of all points
for which exact value of the objective function have been calculated earlier.

A xy
A X7
X1 X1
» .
> >
a) b)
A x, A x;
X
X1 X1
> >
c) d)

Figure 1. Concept of the EVCA algorithm
e point with known value of the objective function, X point with unknown value of the objective function

General diagram of the EVCA algorithm written in flowchart form has been presented in
figure 2. In this diagram it can be seen the main loop of the algorithm with the key modules
(check, get, add).
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Figure 2. Flow diagram of the EVCA algorithm

Figure 3 shows basic operations and data flow in the module which is responsible for
source selection of objective function value. The sources can be as follow:
- cache — value of the objective function will be taken from the cache,
- estimator — value of the objective function will be evaluated with appropriate estimator,
- exact value — value of the objective function will be calculated by calling method which
contains definition of the objective function.

In the first step the algorithm looks for any point in the cache which is close to
considered point x. If no point has been found in the cache than it searches appropriate
neighborhood of point x which is necessary to evaluate objective function value for this point.
The algorithm introduces an additional probabilistic factor, which can force exact calculation
of the objective function value, despite the fulfilment of the conditions required for the

evaluation.
P result = false
Y
€ _
| caculate N
distance
result = true

>

=i+l €

Figure 3. Flow diagram of check submodule in EVCA algorithm
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The next diagram (Figure 4) shows necessary steps during which objective function
value is taken from the cache or evaluated with using appropriate estimator.

) _ calculate
‘ di = ||x-xcacheil| }» ffffff { distartl

»| result = ycachei

Figure 4. Flow diagram of cache and estimation of objective function in EVCA algorithm

After each exact calculation of the objective function value in a given point, this value
is added to the cache according to Figure 5.

®

ncache = ncache + 1

add to cache | 2dd to cache
Eall
X ¥

Y

Figure 5. Flow diagram of adding objective function to the cache in EVCA algorithm

Sample possible estimators for evaluations of objective function value have been
presented in Figure 6. Among the estimators there are weighted average (Figure 6a), artificial
neural network (Figure 6b), regression functions (Fig. 6 c) and evolutionary estimator (Figure
6 d) [11]. In this work objective function value has been estimated with using a weighted
average method. Estimated objective function value can be calculated according formula:

(4)

where w, are weights which values depend on distance between x® and x .
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Figure 6. Schematic representation of objective function evaluation methods

Caching mechanism can have own implementation as dictionary with key value
elements or dedicated tools such as Memcached [12] or Redis [13] can be used. The main
advantage of the ready to use tools is the ability to manage the available memory allocation and
using multiple physical machines connected in a cluster.

Numerical simulations of benchmark functions. Algorithm of evaluation and caching
of objective function value has been tested by solving nonlinear optimisation of benchmark
functions [14]. These functions have known solutions and they are continuous in the feasible
set. Mentioned functions have either ordinary courses or many local extrema and saddle points.
Determination of the global extrema is difficult task and it strongly depends on assumed starting
point [15, 16]. For all analysed benchmark functions dynamic optimisation problem has been
solved using various algorithms [15 — 19]:

— Powell Method (PM);

— Nelder-Mead Method (NM);

— Variable Metrics Method (VM);

— Hooke-Jeeves Method (HJ);

— Classical Genetic Algorithm (GA);
— Particle Swarm Optimisation (PSO).

Some of above methods, like classical genetic algorithm and particle swarm
optimisation, have been taken from a computational intelligence. Other are classical gradient
and gradientless optimisation methods. In all considered optimisation problems minimum of
the objective function has been determined. Assumed parameters of the optimisation methods
have been presented in Table 1.
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Table Ne 1.

Optimisation methods parameters

Optimisation method Parameters
Powell Method (PM) gpy =107
Nelder-Mead Method (NM) ey =1071
Variable Metrics Method (VM) sy =107
£ny =107
Hooke-Jeeves Method (HJ) r =103
N ax = 1500
Nga =30
. . . Pc =0.7
Classical Genetic Algorithm (GA)
Pm =0.2
N nax =50
. .. - N pPs — 10
Particle Swarm Optimisation (PSO)
Nmax =50

where: &,,, — the fractional tolerance,
ew — fractional convergence tolerance,
sy — gradient convergence tolerance,
ey, — iteration accuracy,
¢ —initial iteration step,
N,..x — Maximum number of iterations,
Ng, — humber of individuals in population,
pc — crossover probability,
py — Mutation probability,
Nps — number of particles in the swarm.

In the case of optimisation with application of genetic algorithms it is assumed real-
number representation of genes in chromosomes and the following genetic operators have been
used [11]: natural selection, arithmetical one-point crossover, in which a new chromosome is a

linear combination of two vectors and non-uniform mutation.

Easom's function is first analysed function (Figure 7). This function is described by

formulae:

Q(x,, X, )=—cos x, cos x,e ")

It has only one global extrema obtained for 0 < x,,x, <5 which equals Q(x,,x,)=0 in point

X, =X, =7.
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Figure 7. Easom's function

Results of nonlinear optimisation task have been summarized in Table 2. It can be seen
that evaluating and caching mechanisms have been often used for stochastic optimisation
methods like GA and PSO. These mechanisms are less important for classic algorithms of
nonlinear optimisation. Analysing the obtained solution, it can be concluded that only two
methods have been determined a solution different than the global optimum. It can be due to an
incorrectly selected starting point. Other methods have been determined the solution close to
the optimal point.

Table Ne 2.
Result of simulation for Easom's function
Method ne ne n, we [%] | we [%] X" X" Q%"
GA 1208 399 2500 48.320 15.960 3141 3.140 | 0.000002434
NM 2 37 2692 0.080 1.480 3.141 3.141 0.000000001
PM 19 17 2775 0.760 0.680 1.305 1.305 | 0.999918898
HJ 4 21 2906 0.160 0.840 3.141 3.141 | 0.000000000
VMM 1 0 3911 0.040 0.000 1.017 1.017 | 0.999966802
PSO 59 442 6959 2.360 17.680 3.141 3.141 | 0.000000000

Second analysed function has been axis parallel hyper-ellipsoid function (Figure 8),
which written in the following form:

Q(Xv Xz) = X:L2 + 2)(22 (6)

It has only one global extrema obtained for 0 < x,,x, <5 which equals Q(x,,x,)=0 in point

X =X%X,=0.
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Figure 8. Axis parallel hyper-ellipsoid function

Results of optimisation obtained with various nonlinear optimisation algorithms have
been shown in table 3. Analysing the results, it can be concluded that PSO and GA method use
most frequently estimating and caching mechanisms. It can be noted that usage of caching
mechanism for GA method is over 50%. In the case of PSO method usage of caching
mechanism is negligible, but number of evaluations is more than 30%. Optimal solution for
analysed benchmark function has been correctly determined by all optimisation methods.

Table Ne 3.
Result of simulation for axis parallel hyper-ellipsoid function
Method Ne Ne N, we [%] | we [%] x> x5 Q™ x3™)
GA 1402 0 2500 56.080 0.000 -0.004 0.0002 | 0.000016844
NM 3 44 2707 0.120 1.760 2.93e-5 | 5.83e-6 | 0.000000001
PM 58 65 2891 2.320 2.600 1.25e-5 0.0 0.000000000
HJ 3 38 3027 0.120 1.520 1.56e-5 | 7.83e-5 | 0.000000000
VMM 1 25 3067 0.040 1.000 1.67e-6 | 8.56e-7 | 0.000000000
PSO 32 813 6103 1.280 32520 | 9.31e-7 | 2.05e-7 | 0.000000000

Another considered function has been Rosenbrock’s valley (Figure 9), which is
described by the following formulae:

Q(Xv Xz) = 1OO(X2 - Xlz)z + (1_ X:l)z (7)

It has only one global extrema obtained for -2 < x,,x, <2 which equals Q(x,,x,)=0 in
point x, =x, =1.
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2>

Figure 9. Rosenbrock’s valley

Analysing the results, presented in the Table 4, it can be concluded that usage of
evaluating for all considered optimisation methods is small. It can be also noted that usage of
caching mechanism for GA method is over 50%. This algorithm gives the least accurate
solution in relation to other methods. However, this is a feature of genetic algorithms which can
point the area where the global solution is located.

Table Ne 4.
Result of simulation for Rosenbrock’s valley
Method Ne Ne N, we [%] | we [%] X X Q™ x;™)
GA 1356 0 2500 54.240 0.000 0.926 0.843 0.028491650
NM 13 48 2719 0.520 1.920 1.000 1.000 0.000000000
PM 19 7 2758 0.760 0.280 0.999 0.999 0.000000000
HJ 4 8 2812 0.160 0.320 1.000 1.000 0.000000000
VMM 1 7 2823 0.040 0.280 1.000 1.000 0.000000000
PSO 0 60 5865 0.000 2.400 1.000 1.000 0.000000000

The last tested function has been Rastrigin’s function (Figure 10) which can be written
as follow:

Q(x,,x,) =20+ x> ~10c0s(27x, )+ x,” —~10cos(27x, ) (8)

It has only one global extrema obtained for -2 <x,x, <2 which equals Q(x,,x,)=0 in
point x, =x,=0.
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Figure 10. Rastrigin’s function

This function is the most difficult to solve from among all analysed functions. It has
many local extrema which can be a big obstacle for the classical algorithms of nonlinear
optimisation. Results presented in the table 5 confirm this hypothesis. Only VMM and PSO
method correctly pointed the global minimum. Usage of evaluating and caching mechanisms is
similar to previous analysed benchmark functions (about 50%). Value of the objective function
obtained from GA method is close to global minimum, but its coordinates show that it is only
local extrema.

Table Ne 5.
Result of simulation for Rastrigin’s function
Method Ne Ne N, we [%] | we [%] x> x5 Q™ x3™)
GA 1404 0 2500 56.160 0.000 -1.326 -0.009 | 0.018753945
NM 3 71 2748 0.120 2.840 0.995 0.995 1.989918232
PM 25 30 2841 1.000 1.200 0.995 0.995 1.989918114
HJ 4 28 2945 0.160 1.120 0.995 0.995 1.989918119
VMM 1 0 2956 0.040 0.000 0.000 0.000 | 0.000000000
PSO 32 692 5991 1.280 27.680 | -2.54e-6 | -3.26e-6 | 0.000000000

Usage of evaluating and caching mechanisms for all considered functions is negligible
in the case of classical gradient and nongradient nonlinear optimisation methods. This usage is
considerable when optimisation problem is solved with using stochastic methods. According to
the authors a EVCA algorithm can make a big difference in the case of optimisation of physical
systems, for which a time of the objective function calculation can be long. For example,
mechanical systems can need to integrate dynamic equations of motion in the whole time
interval when the objective function is determined. In order to prove this hypothesis, in the next
chapter results of numerical simulations of the double pendulum on the cart have been
presented.

Numerical simulations of physical system. Pendulum systems are often used as
examples for highly nonlinear underactuated mechanical systems. Stabilization of the

pendulum is still a challenging problem and can be used to show the effectiveness of control
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systems in analogy with the control of many real systems. It can also be used for the verification
of the designed control systems or for control education in laboratories. Researchers have been
analyzing the stabilization of single and multiple pendulum systems in the instable inverted
position, the swing-up or pendulums mounted on a cart which moves on a horizontal rail [20].

The double pendulum on a cart is modeled by two rigid links connected by rotational
joints which lengths are described as I, and 1, . First link is connected with the cart which is

modeled as rigid body (Figure 11). The general coordinates ¢, and ¢, describe absolute rotation

angles of the links. Friction in the joints have been taken into account in order to obtain more
realistic system. All physical parameters of the links have been presented in table 6. The cart’s
movement is described by x,. It has been assumed that mass of the cart is m, = 4[kg].

u(t)
f()
e

l3,]2,m;

Figure 11. Double pendulum on a cart

Table Ne 6.
Mechanical parameters of the double pendulum links [20]
Name Symbol Unit of measure | Link 1 Link 2
Length I, m 0.3560 0.3560
Distance to center of gravity a m 0.1800 0.1480
Mass m; kg 0.7750 0.6540
Moment of inertia J; Nms2 0.0224 0.0179
Friction constant d, Nms 0.0050 0.0050

Dynamic equations of motion of the double pendulum on a cart have been derived from
Lagrange equations of the second kind which can be written as follows [20]:

o T = 9

where: L — Lagrangian function,
f=(f)_,, — vector of generalized forces which describes influence of external forces

and forces which result from friction in the joints,
a=(d),s=[% @ @] —vectorof generalized coordinates.

Finally, equations of motion can be written in the matrix form [20]:
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M(a)i+9(a,q)=f (10)

where: M(q) — mass matrix,

G(q,9) — vector of centrifugal and Coriolis forces.

Optimisation with using EVCA algorithm has been made for two test cases of double
pendulum on the cart. The aim of the optimisation is to determine the force acting on the cart
which can restore equilibrium of the system. This force has been modeled by means of spline

functions of 1% order. For time period t < <t(”,t(”l)> force acting on the cart can be written in the

form:
u)=a® + b“)(t —t®) (11)

where a®, b® are coefficient of the spline functions. Decisive variables in the analysed
problem are values of the force in interpolation nodes. Vector of decisive variables can be
written as follow:

X=[X, . Xi o X,] (12)

where: X, =u(t®) — value of the force in the time stamp t*,
n —number of discrete time stamps (humber of interpolation nodes).

Case 1
In analysed case, link 1 has been tilted so that it lost static equilibrium. Initial conditions
assumed in case 1 have been presented in table 7.

Table Ne 7.
Parameters of the double pendulum on a cart for case 1

Symbol Unit of measure Value
o, rad 12-7
o, rad b2
X, m 0
f (t) N 0

In order to solve dynamic optimisation problem Powell method and variable metric
method have been used. During exact calculation of the objective function value dynamic
equations of motion (10) are integrated in whole time interval. This operation involves a large
computational effort and is time-consuming. Fourth order Runge-Kutta [16] method has been
applied to integrate dynamic equations of motion. It has been assumed that course of the force
u(t) is described by 10 interpolation nodes. Results obtained from optimisation have been

shown in Figure 12.
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Figure 12. Courses of rotation angle of first (a) and second (b) link for case 1
1) before optimisation, 2) after PM optimisation, 3) after VMM optimisation

Results confirm that the optimisation process has been performed successfully. It means
that magnitudes of rotation angle ¢®(t) and ¢@(t) are significantly smaller than before

optimisation. In order to assess influence of evaluating and caching mechanism on results
obtained from optimisation quantitive indicators have been calculated and summarized
in table 8.

Table Ne 8.
Result of simulation for double pendulum on a cart for case 1
Method Ne Ne Ny w, [%] w, [%]
PM 318 54 837 37.99 6.45
VMM 7 228 348 2.01 65.51

Above results confirm hypothesis, that in physical systems mechanisms contained in EVCA
algorithm are frequently used. In the case of Powell method usage of caching mechanism is
close to 40%, while usage of evaluating mechanism for variable metric method is over 60%.
Results show that when the evaluating and caching mechanism are applied, the time of
optimisation calculations is significantly smaller. Analysing summarized values from the Table
8 it can be concluded that the time of calculation has been reduced about 45% in Powell method
and nearly 70% in the case of variable metric method.

Case 2

In the second case pendulums are in static equilibrium at the initial time, while the
variable in time external force acting on the cart. Initial conditions assumed during simulations
have been presented in table 9.

Table Ne 9.
Parameters of the double pendulum on a cart for case 2
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The aim of the optimisation task is to reduce influence of the external force acting on
the cart, in order to preserve position from static equilibrium for both pendulums. Dynamic
optimisation task has been solved with using Powell and Hooke-Jeeves method. It has been
assumed that course of the external force u(t) acting on the cart is described by 20 interpolation

nodes. Results obtained for optimisation have been shown in figure 13.
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Figure 13. Courses of rotation angle of first (a) and second (b) link for case 2
1) before optimisation, 2) after PM optimisation, 3) after HJ optimisation

Analysing obtained results it can be seen that angles of rotation ¢®(t) and ¢®(t) are
constant and both pendulums preserve initial position. In order to assess influence of evaluating
and caching mechanisms on dynamic optimisation process quantitive indicators have been
calculated and summarized in table 10.

Table Ne 10.
Result of simulation for double pendulum for case 2
Method Ne Ne Ng we [%] we [%]
PM 8713 2051 21514 40.50 9.53
HJ 55 5794 11131 0.49 52.05

Above results confirm again hypothesis, that in physical systems mechanisms contained
in EVCA algorithm are frequently used. In the case of Powell method usage of caching
mechanism is close to 40% and usage of evaluating mechanism for Hooke-Jeeves method is
over 50%. Analysing summarized values from the table 10 it can be concluded that the time of
calculation has been reduced about 50% for both analysed methods.

Conclusions. In the paper EVCA algorithm which allow to reduce optimisation
calculations time has been presented. This algorithm is useful for the problem, in which time
of calculation of the objective function is long. Analysed algorithm uses two mechanisms:
evaluating and caching. During optimisation exact values of the objective function are collected
in the cache. The first mechanism is applied when analysed point lie close to another stored in
the cache. If such point can’t be taken from the cache, value of the objective function can be
evaluated with using appropriate estimator. In the paper the results of using mentioned
mechanisms to benchmark functions and physical system like double pendulum on the cart have
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been shown. The Tests have been performed with using classical gradient and nongradient
optimisation methods and stochastic methods like genetic algorithms and particle swarm
optimisation method. Obtained results show that usage of evaluating and caching mechanisms
for all analysed benchmark functions is negligible if classical optimisation methods have been
used. Huge usage of these mechanisms can be seen when the methods from computational
intelligence have been taken into account. Very interesting results from dynamic optimisation
have been obtained for double pendulum on the cart. Significant usage of evaluating and
caching mechanisms have been noted for all considered optimisation methods. When the
Powell method has been applied, the usage of caching mechanism is nearly 50%. In the case of
Hooke-Jeeves and variable metric method usage of the evaluating mechanism is over 50%.
It means that the time of optimisation process for double pendulum on the cart and other
physical system can be half as long if EVCA algorithm has been applied.
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YK 004.02
AJIT'OPUTM ONTUMI3BALIII CKOPOUEHHS YACY OBUUCJIEHD

Kmnmrod Asrycrunexk; Kopueas BapBac

Yuieepcumem y benvcovro-banii, benvcvko-bsna, Honvwa

Pestome. B b6acamvox eunaokax eupiuieHHs npobiem onmumizayii, 30Kpema OUHAMIYHUX Npobrem
onmumizayii, eumaeac bazamo uacy. Ilpuuunor yvoco € mpueanuti nepiod 0OUUCIEHHSI 3HAYEHHS YINbOBOT
@yukyii. Hanpuknao, ynpoodossic npoyecy Onmumizayii MeXaniyHux CUCmeM MOodice 3 S8UMUCT HeoOXIOHicmb
iHmezpy8anHa OUHAMIYHUX PIBHAHL PYXY NPOMALOM YCb020 inmepeany dacy. B 36’3y 3 yum, 6yau po3poobneni
cneyianizo8ami memoou, sKi 0036010 Mb 0OYUCTUMU NPUOIUSHE 3HAUEHHS YiTb08oT QyHKyii. L[i memodu 3a3euuaii
IPYHMYIOMbCS HA AN2OPUMMAX NOGHOI onmumizayii ma mMicmsams Memoou pO3PAXYHKY NPUOIUSHUX 3HAYEHD
yinbogoi yukyii. B yii cmammi 3anpononosano wHosuu ancopumm EVCA (oyiniosanus i Kewysamms),
NPUSHAYEHUNl 3MeHWUmu Yac oOuucieHb ni0 uac npoyecy onmumizayii. Baowcaugow —ocobausicmio
3aNPONOHOBAHO20 ANCOPUMMY € me, WO GiH Modce OYymu 3acmocosanuii 00 OyOb-KUX HeNiHIUHUX Memoodié
onmumizayii AK 2padicHmHUX, Max i HespadicHMHUX ma CMoxacmudnux. /s npoeaoiceHHs 3anponoH08aH020
nioxo0y Hemae HeoOXIOHOCMI 3MIHI8AMU AI2OPUMMU MA Memoou ONMUMI3aYii, SKI 3aCMOCco8yromvcs O
006uuUCIentsT 3HAYeHb Yinbosoi GyHKYIl. B arcopummi 6UKOPUCMOBYIOMbCSA 084 emanu: OYIHIOBAHHS 3HAYEHb
Yinb0osoi PyHKYIl ma Keuy8anHs OMpUMAHUX 3HAYEHb OISl 6CIX NONEPEOHbO PO3PAXo8anux mo4ok. Taxuil nioxio
00360/1€ eMeKMUGHO NPUUBUOWUMYU NPOYeC ONMUMI3ayii, 0cooaUso Ol ONMUMI3AYIl QISUYHUX CUCTHEM.
Ilpeocmasnerno pesynomamu onmumizayii 0 emMAanroOHHUX QYHKYI Ma NOOGIlIHO20 MAAMHUKA 3 PYXOMOIO
ocHoso10 i3 3acmocysantam anrzopummy EVCA.

Knrouosi cnosa: onmumizayis, oyin08aHHs Yinboeoi QYHKYIT, 2eHeMUUHULL AI20PUMM.
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