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Summary. Thermal failure of three—dimensional viscoelastic cylindrical panel with independent
temperature electromechanical characteristics under the forced resonant vibrations is investigated. The problem
is reduced to the solution of the linear problems of thermo electrovisco elasticity and linear problems of thermal
conductivity with known heat source. The solutions of these linear problems are obtained by a finite element
method. The influence of the heat transfer coefficient on a critical potential difference is investigated.
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Problem setting. Cylindrical panels made of passive and piezoelectric materials are
widely used in various fields of modern technology [1-4] as sound emitters and receivers that
operate in a wide range of frequencies. The resonance mode is among their main operational
modes.

Hysteretic losses inherent to inelastic piezoelectric materials lead to an increase in their
temperature, also called dissipative heating temperature. Its level depends on many factors: the
geometric parameters of the body, load amplitude, frequency, dissipative properties of the
material, mechanical and thermal boundary conditions etc. The greatest increase in temperature
occurs during oscillation at the resonant frequencies.

Large number of studies, such as provided in [5-19] for reviewing purposes, deal with
resonant vibrations of piezoelectric active material cylinders. However, almost all of them do
not take into account dissipative heating which can lead not only to quantitative but also to
qualitative changes in oscillatory process. For example, when the piezoelectric active material
temperature reaches Curie point a specific type of thermal destruction occurs when structure
ceases to perform its functionality due to its loss of piezoelectricity. The importance of taking
into account the temperature of dissipative heating as one of the main reasons for limiting the
power of emitters was already mentioned in earlier works dealing with piezoelectric
transducers [4].

Analysis of known research results. Vibrations of elastic and viscoelastic cylindrical
bodies in three-dimensional setting were analyzed in a number of works of both domestic and
foreign scientists [5-19]. The authors know of only one article [20], which investigates the
vibrations and dissipative heating of three-dimensional viscoelastic cylindrical panels.
However, the references list no works which study the thermal destruction of such panels at
harmonic electric load due to the temperature reaching the material degradation point, or the
Curie point, at which the piezoelectric effect is lost and the panel no longer fulfills its functional
purpose.

Objectives. To investigate the thermal destruction of viscoelastic cylindrical three-
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dimensional panels at harmonic electric load depending on the heat transfer coefficient with the
environment.

Formulation of the problem. We consider the three-dimensional problem of thermal
destruction of viscoelastic cylindrical piezoelectric panel under the action of time harmonic
potential difference. The potential difference is fed to an infinitely thin electrodes deposited on
the cylindrical surface. Other surfaces have no electrodes. To simulate the electromechanical
state of piezoelectric material at harmonic deformation we use the concept of integrated
characteristics [21-22], according to which the defining equation of piezoelectric active
materials have the same form as the constitutive equations for elastic material with the only
difference that they are complex. It is believed that their real and imaginary components are
independent of temperature. In this case the problem is divided into two independent problems:
1) the problem of electro mechanics and 2) the problem of thermal conductivity with a known
source of heat. The first of these tasks is reduced to solution of system of differential equations
in partial derivatives with complex coefficients. Next step after solving this problem is finding
the average for the period electromechanical power, serving as a heat source in energy equation.
Then the problem of thermal conductivity with a known source of heat is solved. Variation
settings of each of these problems are given. Variation problems are solved by finite element
method. As a thermal destruction criterion we select reaching Curie point by dissipative heating
temperature at which piezoelectric material ceases to fulfill its functional purpose due to its loss
of piezoelectric effect and transformation of piezoelectric active material into a piezoelectric
passive one. To calculate the critical potential difference at which a thermal destruction of
piezoelectric panel occurs it is necessary to repeatedly solve the above problems for different
amplitudes of electric load and find a potential difference at which the maximum temperature
reaches the Curie point. Critical load depends on many factors: the conditions of heat transfer,
mechanical and electrical boundary conditions, geometric parameters of the panel, material
properties and others. When the electric load level exceeds the critical point, it brings the
problem of determining the critical time at which the maximum dissipative heating temperature
equals Curie point. By determining the critical time for different levels of supercritical load we
can build Weller type curve that links the critical load and critical time. This curve also depends
on the factors mentioned above. In this paper, the main focus is on the calculation of the critical
potential difference. We also present temperature and amplitude-frequency characteristics and
a graph of the critical potential difference of heat transfer coefficient.

Let us assign cylindrical coordinate system (r, z, 6) to a cylindrical panel made of
viscoelastic piezoelectric material. Electromechanical properties of this material are considered
independent of temperature. The panel is under time harmonic electric load with a frequency
close to its first resonant frequency of the panel. Electromechanical behavior of inelastic
material is described by the concept of integrated characteristics [21-22]. In this case, the
dynamic problem of vibration and dissipative heating of piezoelectric panels comes down to
the interpretation of three-dimensional equations of motion and equations of electrostatics in a
cylindrical coordinate system [1]:
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where o (i, j=r,0,z) —amplitude value of stress tensor components; w, u, v — components

of displacement vector; p — material density; o — oscillations frequency; D — Electric
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displacement field of radial D, , circumferential D, and axial D, components.

On the surface of the body X 0 where surface forces are set, stress tensor satisfies the
following boundary conditions P,, =1, . Here 1 (3 =123) —the direction cosines of outer
normal n to the surface of the body X' ; P, — the projection of surface forces on the axis of

al

the cylindrical coordinate system. In another part of the body surface >, components of the

displacement vector can be specified.
When electric field on infinitely thin electrodes covering the cylindrical surface of the
panel excites oscillation, we set the value of the electric potential

¢ — ¢Oei(ut ) (2)

In those parts of the body surface where electrodes are absent, we assume that the normal
component of electric displacement field D, is zero(D, =0).

Strain tensor is associated with the displacement vector by Cauchy ratios [1.23]
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The electric potential ¢ is associated with the electric field strength components by
ratios

£=-22; £ =-2; g2 @
0z or roe

For its closure the system (1) — (4) has to be supplemented by equations of state. For
pre-polarized radially viscoelastic piezoelectric materials complex equations of state in the
cylindrical coordinate system (r, z, 0) are of the form [1, 22]
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The temperature field of dissipative heating is found after solving thermal conductivity
equation [21, 22]
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and boundary conditions of convective heat exchange with the environment, the temperature
of which T_:
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oT
/1q5=—aT(T -T.), 8

where 4, — coefficient of thermal conductivity; o, — heat exchange factor; ¢ — specific mass

ratio of the material heat capacity.
Dissipative function D,, , part of the energy equation (6), is determined by the formula

[21, 22]
Dy =2 (046} ~ oy + DIE/- DE G i =1.0.2). ©

Analysis of numerical results. The system of equations (1) — (9) with appropriate
boundary and initial conditions is a complex linear system of differential equations in partial
derivatives with complex coefficients. For independent from temperature characteristics the
system (1) — (9) splits into two independent linear problems: the problem of calculating the
electromechanical state of viscoelastic piezoelectric material body and the problem of thermal
conductivity with the known heat source [5, 7].

We solve these problems using linear finite element method (FEM). For this we give
variation formulation of the problem of electro mechanics, which brings its solution to
determining the stationary points of functional
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Solution of heat conduction problem with a known source of heat is reduced to solution
of variation problem for the functional
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For approximation of stress-strain state and the electric potential in the meridian plane
of intersection (r, z) apply algebraic polynomial of the second degree. For approximation of

movement and potential in the circumferential direction in each element we use trigonometric
polynomials

(11)

H(0)=a, +a,cos6+b,sing. (12)

We divide the region occupied by the body N by M spatial elements using nodal points.
In this case, let us assume that the displacement and electric potential within the element are
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approximated by expressions

24 24 24 24

w=>Y Kw, u=>Ku v=> Ky ¥=>K%¥. (13)

i=1 i=1 i=1 i=1

where w.,u,,v,, ¥ — the nodal values of displacements and electric potential; K, —

approximation functions that are a combination of algebraic Lj(j =123,...8) and normalized
trigonometric polynomials H,(j=123):
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Thus defined form functions K, =L H,; K, =L,H,;...;K,, =L;H, are zero in all

nodal points of the element except the node whose number matches the number of the
24

corresponding form function. In addition, they satisfy the condition Z K; = 1. The relationship

i=1

between cylindrical r,z and local &,; coordinates is established by using dependencies

r:ZKiri; =) Kz. (16)

Since it is impossible to get dependencies of the kind &(r,z), 7(r,z), that are inverse
to (16), partial derivatives in determining strains are to be calculated using &,7, and then solve

thus obtained dependences regarding derivatives to cylindrical coordinates. As a result, the
expression for the strain tensor components and vector components of the electric field through
the nodal values of displacements and electric potential can be written as
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— Jacobi determinant (Jacobian).
We also approximate mechanical stress P by shape functions within each finite element:
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Substituting the expressions for the strains and electric field vector components in the
functional (10), within the conditions of its stability we obtain the system of linear algebraic
equations for nodal displacement vector component values and electric potential

(WI., u, vi,gol.) for a specific finite element:
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Expressions for the coefficients a;,...,d; of these equations are determined by the

physical and mechanical characteristics of the material and geometric parameters of the
considered body.

Adding up expression (21) on all finite elements for the general global node numbering
we get a system of equations units, where volume integration is replaced by the amount of
integrals taken according to the volume of separate finite elements, and surface integration is
replaced by the amount of the surface elements integrals, where the boundary conditions in
stresses are set.

The resulting system of algebraic equations we solve in complex domain using Gauss
method. This allows us to accurately obtain the solution of large dimension systems without
violating the symmetry and strip-like appearance of their structure.

According to the nodal values of displacements and electric potential we determine the
strain tensor components and electric field vector components at any point of the finite element.
In this case, the estimation accuracy of the strain and stress induction and electric field due to
the necessary process of differentiation is lower than estimation accuracy of the displacement
and electric potential. It will also be different in different parts of the element. The most accurate
values we obtain in Gauss integration points that correspond to the minimum order of
integration [24-26] (in this case n = 8).

i . L Gl
In solving the variation problem (11) for the heat equation time derivative . does not

vary and is replaced by the expression

oT _T(t+At)-T(t)
ot At

(22)

This allows us to implement implicit scheme of solving heat conductivity problems.

Thus calculations of the deformations, the electric field, as well as mechanical stresses
and electrical induction are conducted in eight points of integration. It is known [24-26], that
the position of integration points is determined by irrational numbers. This causes some
discomfort when analyzing the results. For many practical calculations it is important that
required values of stress and electrical induction are calculated at nodal points of a finite
element grid, as well as at the boundaries of the body. The most simple definition of strain,
stress and other variables in each finite element is obtained by extrapolation of the values
calculated at the points of integration, at any point, including the border. For the case considered
the most accurate calculation results are obtained by extrapolating the stress and induction of
electric field by bilinear polynomials.

Research results. Consider a three-dimensional problem of vibrations and dissipative
heating of a cylindrical piezoelectric panel with thickness H . Infinitely thin electrodes, which
get potential difference ¢ = ¢,coswt. are applied on the cylindrical surface. Hinged ends of the

panel are free from mechanical load. In solving the problem we consider a quarter of the panel
with symmetry conditions w=0 at z=0, v=0 at 8=0.through the load symmetry and
boundary conditions. Calculations are performed for piezoelectric ceramic panels
PZT —TC —65 with radial polarization. The panel load together with its geometric, physical
and mechanical properties are characterized by the following parameters:

ISSN 1727-7108. Bictur THTY, No 4 (84), 2016 ... cc.evveoe e eoeeeeeee oo eee e eeeeee e e eeeees e eeseeeeee e e eeeere s eea e D3



Thermal failure of three-dimensional viscoelastic cylindrical panel with independent temperature characteristics under the
forced resonant vibrations

®, =220V;r,=0,09 m;r, =011 m;H =r, —r, =0,02 m;h, =0,005 m;h, =0,015m;L=01m;6, =z /3;

E, =73-10°N/m?v, =0,34; p, =0,75-10* Kg / m°.

Thermal conductivity and density of the material have the following meanings:
A=125W/m°C, p=0,75-10'Kg/m®. When calculating amplitude and frequency
characteristics of temperature and heat transfer coefficient between the environment and the

w
PRy

Complete specifications for the specified material are presented in [27]. Their

dependence on temperature is approximated by second degree polynomials:

panel material is constant (o, =5

S, =[0,171-10* +0,48335-10 2T —0,48511-10 “T?]-10 m*/ N;
S/, =—[0,568-10" +0,48333-102T —0,19444 .10 *T2]-10 ™ s/ N;
S/, =—[0,91-10' +0,97231-10°T —0,38544 10T ]-10 2 x> / N;
S:, =[0,184-10* —0,43333-107'T +0,11111-10°T2]-10 " * / N;
S.. =[0,460-10% —0,29167-107'T —0,6944-10*T?].10 ™2 2* / N;

d!, = —[189,7 +0,4545T —0,1515-10 °T?]-10 ? 2/ N; (23)

d}, =[357+0,17T - 0,41-10°T?]-10 ¥ »* / N;

d;, =[609-0,385T +0,45-10°T*]-10 * »* / N;

1, =[0,20541-10° +0,4163-10°T —0,576-10 T *]-10*%;

1, =[0,14803-10° +0,76783-10°T —0,145-10'T°*]-10*.

Imaginary compliance components equal to

n 07 2 . " 0’1 r . 14 0’ 2 . " O’ 4 r . " 57 6 ’

S = _m 111912 = _5’_85121813 :_Esls’ 33 :_m 331955 — _ESSS'
" 48 ., ., 14,7 ., ., 2536 , 11270 ,
31:Wd311d33:_ﬁd33'd15=_m 15’ﬂ11=_mﬂ111 (24)
b, 342

Haz 14805 Haz-

Complex characteristics c; piezoelectric moduli e;, dielectric permittivity »; are

determined by the formulas:
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Fig. 1, 2 shows the frequency dependence of the displacement vector radial component
and fixed temperature at the point of the middle surface, which lies at the intersection
z=0; R=0,v; =0.

AUX TYXx
35 105W.n w0 L2C
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' 40
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/ \. 20 7
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Figure 1. Amplitude-frequency response Figure 2. Temperature-frequency response

As can be seen from these figures, amplitude and temperature of dissipative heating
reach maximum values at resonant frequencies. Therefore from now on we calculate critical
values of electrical loads at the resonant frequency.

1200

Vip
1000 /
800 //
600 ,/
400 /
/ d
200
. a
0 2 a 6 g 10 12

Figure 3. Dependence of critical potential difference on a heat-transfer coefficient

The curve of the critical potential differences dependence on heat transfer coefficient «
is shown in Fig. 3. As can be seen, with the increase of this factor the critical potential difference
increases monotonically. Based on physical considerations it is clear that in case of thermal
insulation of the panel critical potential difference is zero, since piezoelectric panel thermal
destruction occurs at any electrical load no matter how infinitely small it is.

Conclusions. The paper presents a three-dimensional mathematical model and research
methods of forced resonant vibrations and dissipative heating of cylindrical piezoelectric panel
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with hinged leaning ends; material characteristics are considered to be independent of
temperature. The main results are as follows:

1) based on the concept of integrated features we set a three-dimensional linear
boundary problem of forced resonant vibrations and dissipative heating of viscoelastic
cylindrical piezoelectric panel with characteristics independent of temperature at harmonic
electric load. Solution of this problem is reduced to solving linear problem of electric
viscoelasticity with complex electromechanical coefficients dependent on spatial coordinates,
and heat conduction problem with a known source of heat;

2) solutions to these linear problems of electro mechanics and thermal conductivity were
obtained by finite elements method,;

3) using solutions of these problems we offered a problem setting concerning thermal
destruction of viscoelastic cylindrical piezoelectric panel; where the destruction criterion occurs
at temperature reaching Curie point at dissipative heating of piezoelectric panel at which it loses
its functionality due to its loss of piezoelectric effect;

4) based on the analysis of numerical results the influence of heat transfer coefficient on
the critical potential difference has been researched.
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YK 539.3

TEIIJIOBE PYHHYBAHHSI TPUBUMIPHOI B’SI3KOIPY XKHOI
HUJIIHAPAYHOI TAHEJI 3 HE3AJIEXKHUMU BIJI TEMIIEPATYPU
XAPAKTEPUCTUKAMMU ITPU BUMYIHIEHUX PE3OHAHCHHUX
KOJIMBAHHSAX

Bacuab Kapuayxos!, Bosoaumup Kosaos?, Irop Ympuxin!, Bikrop Ciuko?

Ywemumym mexamixu im. C.I1. Tumowenxa HAH Yipainu, Kuis, Yxpaina
2Muxonaiscokuii Hayionanvhuii ynisepcumem im. B.O. Cyxomnuncvkozo,
Muxonais, Yxpaina

Pe3ztome. Jlocnioaceno mennose pyiny8ants mpusuUMipHoi yuriHOpuuHoi n’€30nanei 3 He3aneHCHUMU 8i0
memnepamypu eieKmpoMexaniuHumMu Xapakmepucmukamu npu 6UMYUWEHUX pe30HaAHCHUX KOAUBAHHAX. 3adauy
36€0€HO 00 PO38 SA3AHHSA 080X JIHIUHUX KPAU08UX 3a0au: 3a0ayi e1eKmpoMexXaniKu il 3a0ayi menjionpogioHocmi 3
sidomum Ooceperom menna. Lli 3a0aui po3g’szano memooom CcKinueHHUX enemenmis. [locniddceno enius
Koegiyichma meniooOMiHy HA KPUMUYHY DI3HUYIO NOMEHYIANi8.

Kniouosi cnosa: mpusumipna yuninopuyHa nanenb, GUMYWIeHi pe30HAHCHI KOIUBAHMS, OUCURAMUBHUL
po3iepie, mennoge pyuHy8aHus, KPUMUYHA PI3HUYSL NOMEHYIANI8.
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