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Summary. A theory of bending of the thick plate normally loaded on lateral surfaces, when its stress state
is not described by the hypothesis of Kirchhoff-Love or Tymoshenko, is suggested. Its three-dimensional stress-
strain state is divided into symmetrical bend and compression. To describe the symmetrical bend, three harmonic
functions are used expressing the general solution of the Love equations and three-dimensional stress state of the
plate. After integrating the stresses along the plate thickness, bending and torque moments and transverse stresses
are expressed through three two-dimensional functions. Closed system of partial differential equations of the
eighth order was developed on the introduced two-dimensional functions without the use of hypotheses about the
geometric nature of the plate deformation. Three-dimensional boundary conditions are reduced to two-
dimensional form.
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Statement of the problem. Thick plates are widely used in transport, power
engineering and civil engineering industries. The development of science and technology puts
forward new high demands to the accuracy of investigations of their strength and holding
ability. Therefore, there is the need for more complete consideration of the equations and
relations of the elasticity theory, while simplifying the initial calculation models, by reducing
them to two-dimensional case.

Analysis of the available investigations. Plates with applied bending loads are widely
used in building and engineering constructions [1-7]. It is known [1-3] that the thick plates
bending should be considered as a three-dimensional problem of the elasticity theory. In paper
[8], the new theory of the loaded thick plates was offered on the basis of Kirchhoff-Love theory,
taking into account the bending moment gradient, considering that the median surface
deflections are significant. It was found [9] that for thick plate bending by transverse force
(within the limits of the three-dimensional elasticity theory), the normals to the undeformed
median surface significantly deviate from the normal to the deformed and bend. Available
plates bending theories [1-8] state the nature of the deformation of the normal to the plate
median surface and do not directly take into account the torque applied to the plate contour. In
paper [10], torque was taken into account and the plates bending theory was developed on the
basis of integration of three-dimensional harmonic equation with the unknown right-hand side.

The objective of the paper is to construct the closed two-dimensional calculation
model of thick plates based on the general solution of Love equations and the found
representation of three-dimensional stresses, as well as to express moments and transverse
forces in the thick plate through three two-dimensional functions satisfying the equations in
partial derivatives.

Statement of the problem and development of the outgoing system of equations.
Let us consider three-dimensional bending problem of the thick plate with constant thickness
h, the plane medial surface of which occupies an area S and coincides with the plane Oxy of
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the Cartesian coordinate system, where the designation X =X, X, =Yy, X3 =z is also
introduced. To both of the external plate surfaces (z=hj, by =h/2, h, =—h/2) the normal
loads q;(x,y), j=1,2 are applied, and tangents are absent. Let us divide the applied loads

into two parts. For the first problem, describing the symmetrical plate bending, the normal loads
of the flat plate surfaces are equal and directed in one direction:

o, (% y.h) =97 (x,y), o, (x,y,h) =—g 7 (x,y), 1)

and for the second —? in opposite direction
oz (X, y,z) =p (xy), oz(x y,—E) =p (X)),

where g* = %(Qr%)i p* :%(q1+q2); the signs “+”, “— describe the functions on the

z =My and bottom z =—h, plate surfaces relatively.

Let us consider in detail the symmetric bending of plate, determined by the boundary
conditions (1). On the closed lateral surface of the plate Q the boundary conditions are
specified

on(X,¥,2)=0onla, (X Y,2)=02lq, T (X Y,2) =030, 2

where oy, j=13 -2 are known loads, Sin(X,y,-2)=-0cj(X¥,2)|lq, =12,

G3n (Xv y,—Z) =03n (X’ Y, Z) |Q

For the solution of the boundary value problem (1), (2) we use the general representation
of the solution of the Love equations given in [11]

_oP 9Q _oP Q UZ:@_4(1—V)®, (3)

Uy =—+—, U, = ,
Xaxé’y yayax oz

where P=z®d+Y¥; ®, ¥, Q —are - three-dimensional harmonic functions of displacements;

v — are Poisson ratio. Let us use the displacements (3) and write the expression of the normal
stresses

a%pP oD . 92 2
=26 — —2v——(-1)] Q| 5,-26LP _p0-v)2 (4)
OX f aX3 8x16x2 aX% 8X3

and for the tangential stresses

o’p  °Q o%Q
T12 =G| 2 + 2 2 |
OX(0Xp x5  OX{
, 2 —
1j3=G 9 12® sg-vyo |- L2 | j=13, (5)
OXj| O3 OX3_jOX3
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where G = 201)’ E are shear and Young’s moduli, respectively. The biharmonic function
+V
P satisfies the following equation:
2
AP+ po2%g), (6)
oz° oz
2 2

where A =——+— s the two-dimensional Laplace operator.

ox2 o2

It follows from the relations (1), (4), (5) that for this load the functions P, ¥, Q are

odd relatively to the variable z, and the function @ is even. From the conditions (1), (2) and
the symmetry of the introduced functions we derive the following dependencies:

ui(X,y,—z) =-uj(x,y,2), i :1,_2, us(x,y,—z) =uz(x,y,z),
oP~ oPT 0¥~ o¥" oQ”  aQ"

, D =07, (M

0z oz ' oz o0z ' oz 0z

where u; are the displacements in the direction of the corresponding axes of the Cartesian

coordinate system.

Let us develop two-dimensional theory of bending of the thick plate. In order to do this,
we substitute the found three-dimensional stresses (4), (5) in the known expressions [1, 2, 4] of
the moments and transverse forces and get:

by 2 A2
Mj(Xl,Xz): J‘chdzzGl‘ﬁ_sz_(_l)J 0 Ql :l’

b asz %Oy
by 2 2 2
H (X, %) = [2110d2 =G| 2 oh +621—621 : (8)
hy OX0Xpy  0Ox5  OXq
- + —
N j (%, %2) = 2G Zi[P+—(1—v)d>]—(—l)J& , j=12,
an X3—j
My
where the introduced two-dimensional functions, equal to the integrals P = szdz,
-
hy _h
Q = szdz , D= jq)dz are denoted and used,
—h -y
L N
y= [ z2_-®dz=ho" -0, (9)
“hy 0z

From the condition of harmony of the displacement functions and relation (6), we derive
the equations that make a connection between the introduced two-dimensional functions
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AR =—nLPt 2P 2y, AD =22 0%, AQ --hLQ'+2Q". (10)
oz oz oz

Here is the equations of the plate equilibrium under its bending [1, 2]:
My OH oMy OH

1=—t+t— 2=——t——,

ox oy oy  ox
2 2 2
%+‘3'\|_2+29+:0, OM;  0™M5 0™ +2g7 =0. (11)
ox oy ox? ay? Oxoy

Let us use in the first two equations (11) the found moments (8) and determine the
transverse forces N j, j=1,2 due to introduced two-dimensional functions
il _o
2 6x3_j

Nj =260 [AR 2wy~ (-1 AQ}. (12)

J

Hence, all efforts and moments are expressed in terms of three functions: P, Q; and

v.
Such defining relation between the introduced functions follows from the equations of
equilibrium (11) and relations (12)

AAP, =2vAy - g /G. (13)

Using the formulas (4), (5), we express the boundary conditions (1) and the conditions
for the absence of tangential loads on the side plate surfaces in the following form:

o%p* oot 1
—2(2-v =—g"(x,Y), 14
o ( )8x3 T (x,y) (14)
+ . A20+ —
0 |,P —41-v)D* =(—1)1&, i=12. (15)
OXj| Ox3 OX3_jOX3

From the equations (15) after simple transformations, we obtain the following harmonic
conditions:

+ +
A[a@P —2(1-v)®"]=0, A Q

X3 OX3

=0. (16)

We use paper [10] to define the function y and write the normal displacements of the
external surface of the plate

P+
u; = 0
0z

Let us find the mean value of the displacement u, along the axis Oz

—4(1-Vv)D™",
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M 1, -
0, == [u,dz==(2P" —4(1-v)®).
h h
—h
Let us assume that it approximately equals u; . After transformations we get

oP*

A(1-v)y =h -2P". (17)
0z

We use the relation (17) in the first equation (10) and find the determining dependence
of the plates bending theory

AR =-2(1-2v)vy. (18)
Taking into account relation (13) we obtain the basic equation of bending theory of thick
plates
1-2v .
AAP, = — .
1= =G (19)

Let us assume that the function Q* is harmonious. The biharmonicity condition follows
from equations (10), (16)

AAQ, =0. (20)

The evident integration of the system of equations (18) — (20) taking into account the
boundary conditions (14), (15) on the external plate surfaces, in the general case of load

g" #0, is the complicated mathematical problem.

Simplification of the bending theory when the load is g* = 0, and unpaired relatively
to the median surface normal loads are applied on the edges of the plate. In this case, it follows
from equation (19) that the function P, is biharmonic, and from equation (13) that the function

v is harmonic.
Taking into account the above mentioned, we provide the required functions

__091(x,Y)
== (21)
0
P = (1—2Vv)yo; + 01, Q1=2y—;;2 +9,(%,Y), (22)

where ¢, g; —are harmonic functions. In the general case the functions g;, j =1,2 can be

expressed in terms of two functions

o of o of
=l———], :_+_,
9 =I o o 92 & ay] (23)

where ¢, f — are harmonic functions. Taking into account the expression of functions
(21) — (23), we express the moments (8) in the following way:
2 2 3 3
0 (03) +y 0 (0F) 0 f

M, = 2G (1—2v)y8—‘21+2(v8q’1+ 2 P2+ :
OX oy  ox OX“dy  07yox
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02 8 02 o3 o> f
Mp = 2G| (1-2v)y 2 +2(1-v) 2 - 2(*2 4y <2 4 |, (24)
oy oy ox X0y 0°yox

2 2 3
H = 26| 1= 2v) (2% y 0y oy O, 04092, O°F |
ox ~ oxoy oy’ oy ox  a%xay

The relations (23) identically satisfy the equation of equilibrium (11). From conditions
(11) we express the transverse forces

. 2 —
N =46 (1-v) -2 00Y) (i @ 0702 15 (25)
OX j oy OX3_ j oxoy

It follows from dependences (24), (25) that the function ¢ does not affect the moments

and transverse forces in the plate. Thus it can be neglected.

The obtained relations allow us to reduce the three-dimensional boundary conditions (2)
given to the side surface of the plate Q to the conditions on its midline L by integrating the
thickness of the plate [1] and using the relations (24), (25):

My sin®6+M;cos? 6+ Hsin20=M |,

%(MZ—Ml)sinZO—Hcos%:Hg||_, (26)

No cosO+ Nysin®=Ng |,

where Mg = rjlmlndz lo, Hg = t}12c52ndz l|o — are - external bending and torque moments,
—h —hy
hy
Ng = J 03,02 | — is the transverse force, 6 — is the angle between the axis Oy and the
—hy

normal to the contour.

Let us assume that the boundary value problem (21), (26), (26) is solved and the
distributed moments and transverse forces are found, through which the stresses on the plate
surface are determined. If we know these stresses, we will determine the deformation and
displacement of the surfaces of the plate.

Conclusions. Two-dimensional theory of symmetrical bending of the thick plate is
developed on the basis of the general solution of the Lamé equations, without using the
hypotheses about the distribution of displacements and stresses. Moments and transverse forces
are expressed through two biharmonic functions with known right-hand sides. The theory of
thick plates bending, which evidently takes into account the torque and satisfies the torque
moments and transverse forces specified along the curvilinear plate contour is offered. The
obtained results can be used in calculating the stressed state of thick plates.
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V]IK 539.3

MNOBYJA0OBA IBOBUMIPHOI TEOPIi 3SrUHY TOBCTUX IIJIACTUH HA
OCHOBI 3ATAJIBHOTI'O PO3B’A3KY PIBHSAHD JIAME

BikTop PeBenko

Inemumym npukaaouux npobaem MexaniKu i Mamemamuxy
im. A.C. Iliocmpueauwa HAH Vxpainu, Jlvsis, Yxpaina

Pe3tome. 3anpononosano meopito 32uHy moecmoi NAACMUHU, HOPMATbHO HABAHMANCEHOI HA OIYHUX
noeepxuax, Konu ii Hanpyoicenuii cman He onucyioms 2inomesu Kipxeoga-Jlasa abo Tumowenxa. Ii mpusumipnuii
HAanpysiceHo-0eqpOpMOBanutl Cman po30eHO HA CUMEMPUYHI 32UH [ CMUcK. /s onucy cCuMempuyHozo 32uHy
BUKOPUCIMAHO MPU 2APMOHIYHUX (DYHKYIT, AKI UPAXCAIOMb 3A2aNbHULL PO36 A30K pieHAHb Jlame Ui onucyroms
MPUSUMIpHULL HARPYJceHull cman naacmunu. Ilicis inmezpyeants HanPysicenb No MOGUWUHI NIACMUHU UPAICEHO
3CUHATILHI A KPYMHI MOMeHmu U nonepeyni 3ycuiis yepe3s mpu 08osumipui @yukyii. Ilobyooeano 3amxnymy
cucmemy piHsAHb Y YACMKOBUX NOXIOHUX 80CbMO20 NOPSOKY HA 86€0€HI 080GUMIPHI YHKYIT 6€3 8UKOPUCTIAHHSL
2inomes nMpo 2eomempuuHuil xapakmep oegopmyeanus niacmunu. Tpusumipni kpaiiosi ymosu 38edeHi 00
080BUMIDHO20 BU2TIAOY .

Knrwouogi cnoea: moscmi niacmuHu, mpusuUMIipHUll HANPYHCEHULl CIMAH, MEH30pP HANPYHCEHb, DIGHAHHSA
Jlaue.

Ompumano 02.03.2018
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