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Summary. The mathematical model describing plane stress-strain state of plane elastic bodies in polar
coordinate system is offered. To describe its three-dimensional stress state, three harmonic functions expressing
the general solution of Lamé equations in cylindrical coordinate system are used. After stresses integration on
the thickness of the plate normal and tangential efforts are expressed through two two-dimensional harmonic
and biharmonic functions. The closed equation system in partial derivatives is developed on the introduction of
two-dimensional functions without using hypotheses about the geometric nature of plate deformation. Three-
dimensional boundary conditions are reduced to two-dimensional form. The example of stress-strain state of
disk is given.

Key words: disk, ring, polar coordinate system, effort, boundary conditions.

Received 30.10.2018

Introduction. Plates in the form of discs or rings described by plane stress state [1 —
4] are widely used in objects of transport, power engineering and construction engineering
industry. The development of science and technology puts forward new high demands to the
accuracy their strength and holding ability investigations. Therefore, there is the need for
more complete consideration of the equations and relations of the elasticity theory in
cylindrical coordinate system by simplifying the initial calculation models due to their
reduction to two-dimensional case.

Analysis of the available investigation results. Although theoretical methods for
stress calculation in circular or ring plates under the influence of loads on certain part of the
lateral surface have been developed since the beginning of the 20-th century [1 — 5], this
problem is still important nowadays, because of its importance for practical design and
materials science [6]. The stressed state of thin plates is, in general, is calculated by the
equations of the plane problem of the elasticity theory obtained in the Cartesian coordinate
system, [1 — 4], and the thick ones — by uniform solutions and symbolic method [2, 7],
harmonic and biharmonic functions [1 — 3], hypotheses about the behavior of the normal to
the median surface [1, 2], the decomposition of three-dimensional stressed state by the normal
to the median surface variable [2, 4].

The objective of the paper is to develop closed two-dimensional calculation model
describing the plane stressed state of the rings in polar coordinate system based on general
solution of Lamé equations, as well as to express the displacement and effort in plates by
formulas that are consistent with three-dimensional elasticity theory.

Statement of the problem and presentation of the solution. Let us consider the

plane problem of the elasticity theory for ring with radius Rj, j =1,2, of constant thickness
h, the plane medial surface of which coincides with the plane Or¢ of cylindrical coordinate
system. On its flat surfaces (z=hj, ] =12, by =h/2, h, =—h/2) there are no normal and
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tangential stresses, and symmetric and parallel to the median surface loads are applied to the
lateral surfaces:

Gr(Rj’(P’ Z) :Gf ((P’ Z) ! TI’([)(Rj’(l)! Z) =G£((|), Z)’ Tz (RJ v(P,Z) :Oa (1)

where o} (¢,-2) = 6 (¢,2), j,m=1 2 are known loads.
To develop the plate plane stressed state in polar coordinate system and integral

satisfaction of conditions (1), we use the general representation of Lamé equations solution
[8] in a cylindrical coordinate system
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where P =z® -+ is biharmonic function; ®, ¥ are introduced [8] harmonic functions of
displacements; v is the Poisson ratio. Function P satisfies the equation
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It follows from the relations (1), (2) and the stresses expression [8] that the functions
P, Q are odd relatively to variable z, and function @ is even.

Taking into account the stresses representation [8], we write the boundary conditions
for the plates free from the loads:
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where signs «t», «» describe the boundary values of the corresponding functions on the
upper z =h, and lower z =—hy surfaces of the plate, y =4(1-v).

Equations (4) result in the following harmonic conditions for the boundary values of
the introduced functions:

+ +
A[ap -21-v)®"]=0, A Q
0z 0z

=0. (5)

Considering that the normal stresses o, [1, 3] for the plane loading plate are
insignificant after their integration along the axis Oz , we find the following relation:

ap; =2(2-v)D". (6)
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Let us insert the dependence (6) in the first equation (5) and get:
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We use formula (6) and simplify the second and third equations (4):
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Let us use the found [8] stress components in cylindrical coordinate system and
express the effort in the plate in polar coordinate system
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where P = dez, Q= dez .
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Replacing the load action (1) with normal and tangential efforts (9) we get the
following boundary conditions for their determination:

T.(R;.9)=T'(¢), S,(R)=S'(9), j=12 (10)

hy hy

where T/ = Jc‘ dz, S'= .[csgdz. Using equations (3), (6), the harmonious condition of
-h -h

displacement functions, we find the following key equations of the plane elasticity theory

plates:

Aﬁz—Aﬂ—xO@*,Aéz—26Q+, (11)
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00"
Oz
It should be noted that the use of relations (8), (9), (11) results in satisfaction of the

known plate equilibrium equations in efforts [1, 2, 4].
Let us represent the general solution of the first harmonic equation (7) in the following

where functions ®* and are harmonic, and P, O are biharmonic functions.

way
of (r,0) 1
o ="—""* +hby,
oo 0 (12)
where @ is unknown harmonic function. We use the expression (12), the relation (8)
¢

between the harmonic functions and derive the dependence:
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Q" 0f (13)

where Arg—fzo. Let us consider relations (12), (13) and specify the representation of the
r

second equation (11)

AQ 8r ﬂ (14)
or

To simplify further presentation we will consider symmetric normal stresses relatively
to angle ¢ . Let us represent the desired functions f , ®* and biharmonic parts of functions P,
Q in the form of series, find partial solutions of the equations (11), (14) and derive

f=hY (bkr* +bZr ™ )sinke,

= (15)
t= hélk(b}(rk +bZr*)coske + hby, (16)

P, = haSbdr? + h(sbir® + 82b?rinr)cose + hkijz(éilkb}(rk+2 +6ﬁbﬁr‘k+2)cos ko, (17)
Q. = h(33bkrd +57b?rinr)sing+h 2(5%1 K+2 1 5Eb2r ™ *2)sin ke, (18)

k=2

where bd are unknown constants,
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Taking into account representation (12) — (18) we express the general solution of
equations (11)

P =Py +0y(r,¢) +aghr, Q=Q +9a(r.¢), (19)
where P, Q; are biharmonic, g ; are harmonic functions that can be, exactly to the constant,
submitted in the following way:

0 0
gl=r§[¢—w], 922%[¢+\V], (20)

where ¢, v are harmonic functions.

Let us apply functions (12) — (20) to relation (9) and express efforts through the
introduced functions
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Hence, function ¢ is not part of the efforts representation (21) and can not be taken
into account while calculating the plate stress state. The relation (20) is simplified to the form

oy oy
:r—’ = —,
01 ar 9o £

Let us take into account relations (2), (6) and find lateral displacements and
+

deformations of the plate plane surfaces: u) =2v®d™, ef =2v oo
z

. For thin plate, the

+
dependence a;D =%cb+ which is consistent with three-dimensional elasticity theory is
zZ

derived.
Since all relations of the elasticity theory of are exactly satisfied, then we can
determine the plane displacements and deformations in the plate after formulas (2) averaging

o _L@P 10Q,  _110P 22)
""hior rog ® hrop or

and stresses by dividing the relative efforts (21) on the plate thickness. Relations (21), (22)
completely describe the plane stressed-deformed state of plates in polar coordinate system.

Numerical implementation of the method. As an example of the developed model
use, we determine the stressed state of the disk with radius R under the action of normal loads
distributed symmetrically relatively to the axis Ox (x = rcos¢)

or(R,0) =01(9), tro(R9)=02(p), ¢<[0,2n], (23)

where known loads o;(¢p) are odd and o,(¢p)are even relatively to angle ¢ and can be
submitted in the form of the following series:

o1(p) = Y d coske, o, (0) = Y dE sinke. (24)
k=0 k=1

While calculating the stressed state of disk coefficients bf will be equal to zero in the
formulas (15) — (18), and function y has the form

wthalkrkcosk(p. (25)
k=1

After substitution of functions (15) — (18), (25) into the relation (22) we define the
displacement
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Z{[(k+2)8k+k8k]b (Ro)**! — 2k2a} (Ra)* Hcoske,
k=0

Uy = — S {[k8} + (k + 2)53 1o (Rer)* — 2k%a (Re)* sin ko}, (26)
k_
and from relations (21) we determine the stress

o = 26{ X ATxkbka" ~xEako?lcosko - avbby,
k=0

ol K 1
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where b, a|1( are unknown coefficients,

a Z%, 1k =Lk +1)[(k +2)8% + ko3 ] - 4vKkIR,

28 = 2(k —1)k%akR* 2 2 = —k(k+1) (L + 53)RK.

Let us substitution stress (27) into the boundary conditions (23), (24) and define the
unknown coefficients

1 d(l)
k=0:bp=—F—"—r;
(xo —4v)2G
1 2 1
k>0:bl=%,a}( M (28)
2G (xk + %xk) 26yt

Introducing coefficients (28) into the formulas (27), (28) we can determine the
displacement and the stress in the circular disk with required accuracy.

Conclusions. It is determined that on the basis of the general solution of Lamé
equations in cylindrical coordinate system, it is possible to develop two-dimensional plane
elasticity theory of plates in polar coordinate system without the application of hypotheses
about the distribution of displacements and stresses. Mathematical and physical rigor while
developing the calculation formulas of the plane problem theory of elasticity is observed.
Normal and tangent efforts exactly satisfy the plate equilibrium equation. It is shown that the
found stresses and displacements are exactly equal to the relative averaged values of the
stresses of three-dimensional elasticity theory. The obtained results can be used in calculating
the plane stressed state of both thick and thin disks and rings.
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PO3PAXYHOK IINIOCKOI'O HAIIPY2KEHOI'O CTAHY IVIACTHH Y
HOJIAPHIN CUCTEMI KOOPAUHAT HA OCHOBI 3AT'AJIBHOI'O
PO3B’A3KY PIBHAHD JISIME

BikTop PeBenko

Inemumym npukaiaouux npobaem MexaniKu i Mamemamuxy
imeni A.C. Iliocmpueaua HAH Yxpainu, Jlvsis, Yxpaina

Pe3tome. Pozenanymo niocky 3adavy meopii ApYyj#CHOCMI 04 KilbYs Cmanoi moswjuHu, HIOCKA
cepeounHa NOBePxXHs AK020 30i2a€mvCs 3 KOOPOUHAMHOI NIOWUHOI YUNIHOpUYHOI cucmemu koopounam. Ha
308HIUHIX NAOCKUX NOBEPXHAX Kinbys GIOCYMHI HOPMATbHI MaA OOMUYHI HABAHMADJICEHHS, a 00 OIYHUX
YUTNTHOPUYHUX NOBEPXOHb NPUKIAOEH] HABAHMANCEHHS, CUMEMPUYHi U Napaienvhi cepeouHHill NOGepXHI.
Ilob6yooea nnocko2o0 HANpysHceHo2o0 CMAawy HIACMUH Y NOMAPHILL cucmemi KOOpOUHam IPYHMYEMbCA HA
BUKOPUCAHHI  3A2ANIbHO20 PO38 A3KY PIGHAHb meopii npyxcnocmi. [nsa onucysauHs il  mpusuMipHoz2o
HAanpys’CeH020 CMAHY UKOPUCIAHO MPU 2APMOHIYHUX (YHKYITL, SAKI 8UpaAdiCaromy 3a2aibHull po36 30K PIGHAHb
Jlame 6 yuninopuunii cucmemi koopounam. Ilicis inmeepysants HANPYsiCeHb N0 MOGUWUHT NIACMUHU BUPANCEHO
HOPMANbHI 1l OOMUYHI 3yCUNLIA Yepe3 081 0808UMIPHI 2apMoHiyHi ma bieapmoniuni Qynryii. Bpaxosano kpatiosi
YMOBU HA GINbHUX GI0 HAGAHMAIICEHb NOGEPXHAX NAACMUHU [ NOOYO0AHO 3AMKHEHY CUCMeMY DIGHAHb )
YACMKOBUX NOXIOHUX HA 66€0eHi 080BUMIPHI (YHKYIT 6e3 BUKOPUCMANHA 2INOme3 NPO 2eOMEeMPUYHULL XapaKmep
Ooegpopmysanna niacmunu. Bcmanoeneno, wo euxopucmauHns OMPUMAHUX CHIBGIOHOWIEHb NPU3ZEOOUMb 00
3a0060/1€HHs PiGHAHL PIGHOBAU NAACMUHYU 6 3YCUNIAX. [N iHme2panbHo20 3a0080E€HHS KPAUOBUX YMOE 0ilo
HABAHMADICEHb HA 30GHIWMIX YUNIHOPUUHUX NOBEPXHAX KilbYs 3AMIHEHO HOPMANbHUMU Ma OOMUYHUMU
YCUNIAMU. 3anucano nodasanHs HaANPYIceHs i nepemierb NI0CKoi 3a0aqi meopii npyscHocmi 3a gopmyramu,
AKI  Y32000iCYIOMbCSE 3 MPUBUMIDHOIO  meopicio  npyscHocmi.  TpusumipHi  Kpatlogi yMo8u 36e0eHO 00
0808uUMIpHO20 8ueisidy. Pospobneno mamemamuuny modenn, sKka OnUCye NIOCKUL HANPYHCEHO-0ehOopMOBaAHULLL
cmam nAACmuH y NOJAPHIU cucmemi koopounam. Hasedeno npuxiad po3paxyHky HanpyiceHo-0eghopmosanoo
cmany oucka.

Kniouosi cnosa: ouck, kinvye, noasipra cucmema KOOpOUHAm, 3yCUILIAL, KPAtiogi yMOSU.
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