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Summary. Prismatic passive and piezoactive nonelastic bodies are used wide-ly in present — day technics.
Under harmonic loading the electromechanical energy in these bodies is turning in thermal energy and the body
temperature is increasing. This temperature is named the temperature of dissipative heating. If the temperature is
equal to degradation point of active material, the structure element is losing the functional role. For active
material the degradation point is equal Curie point. For investigation of dissipative heating of nonelastic elements
it is necessary to use coupling theory of thermoelectroviscoelastisity.

In this paper the formulation of tree-dimensional coupling problem on the forced vibrations and
dissipative heating of nonelastic piezoelectric prism under harmonic electric loading is given. Nonelastic behavior
of material is modeling of complex characteristics. Dissipative heating in energy equation is bringed. It is
proposed that material characteristics don’t depend on the temperature. Then the problem is reduced to solution
of two problems: problem of electroelastisity and problem of heat conduc-tivity with known heat source. Solutions
of problems electroelasticity and heat conductivity are found by finite element method.

By these approaches the three-dimensional problem on forced vibrations and dissipative heating of
piezoelectric prism body under harmonic electric loading is soluted. Dependence of vibration amplitude and
temperature on frequency is calculated.
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Statement of the problem. One of the most common modes of elements operation in
the designs of modern technology for various purposes, including prismatic ones from
piezoelectric material, is their forced oscillations. Each passive (without piezoelectric effect) or
active material in one way or another exhibits inelastic properties. For prolonged forced
oscillations, inelastic behavior the material results in the temperature increase due to hysteresis
losses, to the so-called temperature of dissipative warming up. It can significantly affect the
oscillatory processes in inelastic piezoelectric bodies and even their thermal destruction, which
means reaching the temperature of dissipative warming of such a level when the functional
capacity of the inelastic element of the design is because of reaching Curie point temperature
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of the material active where it loses the piezoelectric effect. Therefore, the investigation of
forced oscillations of prismatic inelastic piezoelectric bodies with their harmonic
electromechanical loading is important problem of thermoelectromechanics.

Analysis of the available investigation results. The main achievements in the
investigation of forced oscillations and dissipative warming of thin-walled and transparent
elements of constructions made of passive and piezo-active materials were obtained by the staff
of the Institute of Mechanics of the National Academy of Sciences of Ukraine. The results of
these studies are published in many articles and monographs by these staff [1 — 10] providing
detailed analysis of scientific achievements on these issues. However, investigations of forced
oscillations and dissipative heating of prismatic inelastic piezoelectric bodies with harmonic
electro-mechanical loading in spatial formulation are not presented in modern literature,
although they are widely used in various fields of modern technology.

The objective of the paper investigate the influence of electromechanical and
temperate fields connection on the thermoelectromechanical behavior of inelastic piezoelectric
prismatic bodies under the action of electromechanical load harmonized in time. The main
attention is focused on the construction of amplitude and temperature-frequency characteristics.

Statement of the problem and its solution. Three-dimensional non-elastic prismatic
piezoelectric body, which yields harmonic time difference potential is considered. The
interaction of mechanical, electrical and temperature fields is taken into account. The body
temperature rises as the result of hysteresis losses in the inelastic material. The simulation of
forced harmonic oscillations uses the concept of complex characteristics, according to which
the defining equations have the same form as the defining equations for the elastic material and
the only difference is that their actual characteristics are replaced by complex ones. The
dissipative function in the energy equation is equal to the averaged over the power cycle. It is
believed that the characteristics of the material are not temperature dependent. In this case, the
problem is divided into two separate tasks. The first one is to solve the problem of
electromechanics. From this solution the dissipative function is found. The second task is to
solve the heat equation with the heat source, which coincides with the dissipative function. To
solve these tasks, the finite element method [9] is used.

The dynamic task of electromechanics is reduced to the solution of the variational
problem for the functional

1
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Hereinafter, the designation of work [1] is used.

To solve the variation equation 6 3= 0, 24-node spatial isoparametric elements with
quadratic approximation of components of the displacement vector and the electric potential
within the element are used. The decoded coordinate system (X, Y, z) is used as the global
coordinate system combining all elements. The normalized coordinate system (&,7,¢). is used
as local coordinate system, in which the approximating functions are determined on the element
and the integration is carried out.
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Let us divide the area occupied by the body N, into M spatial elements by the node
points. We assume that the displacement and electric potential within the element limits are
approximated by expressions

24 2 24 24
W=ZKiWi, U=ZKiUi, V=ZKiVi,¢=ZKi¢i, (2)
i=1 i=1 i=1 i=1

where W,,U,,V,, o, are values of nodes displacement values and electrical potential, K; are
combinations of algebraic polynomials:

K.=LH,, K,=LH,;; K;=LH,; K,=L,H,;
K5=L5H1; K6=L6H1; K,=L,H,; K8=L8H1;
Kg:Lle; K10:L2H2; K11:L3H2; K12:L4H2;

3)
K13:L5H2; K14:L6H2; K15:L7H2; K16:L8H2;
K17:L1H3; K18:L2H3; K19:L3H3; Kzo:L4H3;
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Since isoparametric elements are used, the body may have an arbitrary geometric shape.
The relationship between Cartesian (X,y,z) and local (&£,77,¢) coordinates is performed

by means of dependencies

24

24 2
X:zKiXi; yZZKiyi;Z:ZKiZi’
i-1 i-1

i=1

where X;, y,, z; are coordinates of node points.

Partial derivatives while determining the deformations and the electric field strength
vector components should be calculated according to &,7,6 and then the resulting
dependencies are solved with respect to derivatives in Cartesian coordinates:
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where |J| is Jacobian.

The solution of equation (5) gives
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Expressions for the tensor components deformation and the electric field strength vector
components can be presented in the following form
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The mechanical loads P are also approximated by form functions within each finite
element:

24 24 24
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Substituting the expressions for the deformations and the component of the electric field
intensity vector in the functional (1), under the condition of its stationarity, we obtain the system
of linear algebraic equations relatively to the node values of the displacement vector
components (w;, u,, v,,) and the electrical potential ¢ for a single finite element. Expressions

for the coefficients of these equations are determined through the complex physical and
mechanical characteristics of the viscoelastic piezomaterial and geometric parameters of the
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body. Summing up the coefficients for all finite elements, we obtain the global system of
equations that is solved by the Gaussian method in the complex domain. According to the
obtained values of the displacement and electric potential the components o the tensors stress
deformation, as well as the components of the electric field tension vectors and electrical
induction are determined. Investigation of the thermomechanical behavior of bodies made of
viscous-elastic piezoelectric material are reduced to joint solution of the problem of
electromechanics and the problem of non-stationary thermal conductivity.

Three-dimensional non-stationary heat conduction problem with the known heat source
is also solved by the finite element method on the same grid of finite elements as the task of
electromechanics. In this case, the variational formulation of the problem is used, which is
equivalent to the statement in differential form:

a =0,

where
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Substitution of the derivative from the temperature by time expression

T T@E+A)-T()
ot At

gives the opportunity to implement the implicit scheme for solving the heat conduction
problem.
Applying the above described approach, we solve the problem of forced oscillations and

dissipative heating of rectangular prism with H=2h, + h, thickness consisting of the same
external piezoelectric viscoelastic layers of h, thickness and internal layer of h, thickness from

passive material. Electrodes are applied on the surface of the piezoelectric layers. Zero potential
value is maintained on the internal electrodes. The potential difference ¢ =@, coswt. 3 is

applied to the external electrodes. The edges of the plate are hinge rested. The outer layers of

the plate are made of piezoceramic PZT-Tc-65 with thick polarization, and the inner layer is
made of aluminum. Complete compliance SUE, piezoelectric constants d; and dielectric
penetration 4 for indicated material are given in [9] and have the following meanings:

S =(017,2-0,2i)-10 ¥*m?*/N, S} = (-5,8+0,1i)-10 ?m?/ N,
S5 =(-9,1+0,2i)-10 ?m?/ N,

Ss =(18,4-0,41) -10m?/N, S5 =(48-5,6i) -10?m?/N,
d,, = (357 -14,7i) -10?s/N, d,, = (189,7 -4,8i) -10 s/ N,
d,, =(609-253,6i) -10™s/N,
4y = (20541- 1127i) -10?F /m,, ul = (14803- 342i) -10™F /m.
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Complex characteristics C;, piezomodules e, dielectric penetrations yi} are

determined through characteristics S;°,d;, «; according to the formulas given in [1].

The coefficients of thermal conductivity and material density of the outer layer have the
following values: 1=1,25 W/(m/K), p =0,75 -10*kg/m®.

Calculations are carried out for the plate with sides a = b = 0,1m, total thickness
H= 0,02 m and layers thickness h, =0,005m, h, =0,01 m.

Physical and mechanical properties of the inner layer have the following meanings
E,=7,3-10°N/m? v =0,34, p =0,27 -10°kg /m*, 1 =210 W/(m/K)

The plate is in the heat exchange with the external medium with the temperature
T =20°C. Heat exchange coefficient between the external medium and the plate
a, = 25W/(m/K)
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Figure 1. Dependencies of plate’ deflect on frequency Figure 2. Dependencies of plate’ temperature on
frequency

Investigation results. The results of calculations are shown in Figures 1, 2, where the
dependence of deflection and temperature of the dissipative heating on the frequency for
different values of electric load: ¢,=12V,24V, 36V, 48V (curves 1, 2, 3, 4 relatively). From

the graphs presented in these figures, it is evident that these values depend essentially on the
value of the summed potential difference and on the frequency. With increasing electric load,
the temperature of dissipative heating can reach the critical value at which this temperature
reaches Curie point and the material loses its piezoelectric effect. In this case, there is the
specific type of thermal fracture, when the structure is not divided into parts, but it stops to
perform its functional purpose.

Conclusions. With using conception of the complex characteristics the formulation of
three-dimentiol coupling problem on the forced vibrations and dissipative heating of nonelastic
piezoelectric prism under harmonic electric loading is given. It is proposed that material
characteristics don’t depend on the temperature. The problem is reduced to solution of two
problems: problem of electroelastisity and problem of heat conductivity with known heat
source. Solutions of problems electroelasticity and heat conductivity are found by finite element
method.
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By these approaches the three-dimensional problem on forced vibrations and dissipative

heating of piezoelectric prism body under harmonic electric loading is soluted. Dependence of
vibration amplitude and temperature on frequency is calculated.
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YK 539.3

BUMYUIEHI KOJIUBAHHS 1 JUCUITATUBHUM PO3ITPIB
TPUBUMIPHOI'O ITPUBMATHYHOI'O TLJIA 3
IPE3OEJEKTPUYHOI'O MATEPIAJIY

Bacuab Kapuayxos!; Boaoaumup Kosnos!; Bikrop Ciuko?;
I0piit Hukudopuun®

Ynemumym mexanixu imeni C.I1. Tumowenxa HAH Yipainu, Kuis, Yxpaina
2Muxkonaigcokuii Hayionanvuuii ynisepcumem imeni B.O. Cyxomauncokozo,
Mukxkonais, Yxpaina
3leano-Dpanxiscokuii HaYioHaILHULI MEXHIYHULL yHigepcumem nagmu i 2azy,
leano-Dpanxiecvk, Ykpaina

Peztome. [pusmamuuni mina 3 nacugHux ma n’€30aKMugHUX Mamepianie Wupoko 8UKOPUCIOBYIOMbCs
6 cyuacui mexHiyi. Ilpu capmoHiuHOMY HABAHMAIICEHH] eNIeKMPOMEXAHIUHA eHepeis 6 MmaKux minax
nepemeopocmuCs 8 Meniogy eHepeilo i memnepamypa mina nioguwyyemoca. Lla memnepamypa Hazusaemocs
memnepamypolo OUCUNAmMUEHoO20 po3siepigy. Axwo ysa memnepamypa OOpi6HIOE Moyyi oe2padayii aKmueHo2o
mamepiany, elemenm KOHCMpPYKyii empayae c8o€ ¢hynkyionanvhe npusHawenus. s akmueHo2o mamepiany
mouka Oeepadayii Oopienioe mouyi Kiopi. s 0ocniodcenns OucunamueHozo posiepigy HeoOXiOHO
BUKOPUCIMOBY8AMU 38 S13AHY MeOPiio MepMOeleKmpos A3KONpYscHocmi. B oaniu pobomi nasedeno nocmanosky
mMpusUMIpHOT  36’A3aHOI  3a0aui Npo  BUMYWEHI KOAUBAHHA U oucunamuerull  po3iepié  HenpyicHoi
n’€30e1eKMPUYHOL NPUMU NPU 2APMOHIYHOMY eNeKMPUYHOMY HagaHmadj cenHi. Henpyosicna noeedinka mamepiany
MOOeNEMbCA KOMIAEKCHUMU Xapakmepucmukamu. Hagedeno oucunamueny QyHKyiro, aKa 6X00umv y pieHAHHs
enepeii. Beadcaemvcs, wo xapakmepucmuxu mamepiany He 3anexcams 6i0 memnepamypu. Tooi 3adaua
3600UMbCsL 00 PO38 A3Y8AHHS 080X 3A0AY. 3A0ayi eeKMPONPYICHOCMI Ui 3a0ayi MmenionposioHoOCmi 3 i0OMUM
ooicepenom menaa. Po36’a30k yux 3a0ay 3HAXO0OUMbCA MEMOOOM CKIHUEHUX elemeHmis. I3 uUKOpucmaHHAM
6KA3AH020 NIOX00Y PO38 SA3AHO MPUBUMIDHY 3a0auy NpPO GUMYUIEHI KOAUBAHMA U OUCUNAMUBHUL PO3icpié
NPUSMAMUYHO20 N €30€IeKMPUUHO20 MIiNa Npu 2APMOHIYHOMY eNeKMPUUHOMY HasanmaxcenHi. Po3paxoeano
amnaimyoy — ma memnepamypHo — 4acmomui Xapaxmepucmuxu.
Knrwouosi cnosa: sumyuieni KonueanHs, OUcCUnamusHuli po3iepis, n’e3o0eiekmpuyHa mpusumMipHa npusmd.
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