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CHAIN REACTION
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Summary. In the work the general methodology of control is used for obtaining the solution of the
problem of optimal annealing stage in a polymerase chain reaction in order to effectively conduct the study and
the possibility of providing a multi-stage cyclic regime of temperature change. The annealing stage should occur
at certain temperatures and over time, because otherwise the necessary transformations of DNA molecules may
not occur. The developed model of annealing stage of the polymerase chain reaction, which takes into account the
ratio of the number of single-stranded DNA, primer, single-stranded DNA bound to the primer, direct and reverse
reaction rate for annealing, was used. In the model under study, the Arrhenius equation is used, which takes into
account the dependence of the reaction rate on absolute temperature. The principle of Pontryagin's maximum is
applied to the problem of optimal control of annealing stage and the necessary optimality condition is formulated.
The direct method of numerical solving of the problem of optimal annealing control, which is implemented in the
package of Java classes, is developed. In the form of graphs are presented the results of numerical simulation of
the problem of optimal control of the annealing stage polymerase chain reaction. The results of numerical
modeling of the optimal control of the annealing stage of polymerase chain reaction for changing the number of
single-stranded DNA, the number of primers, changes in the number of single-stranded DNA that are connected
to the primer and the optimal temperature value of the investigated stage are constructed. The obtained results of
numerical simulation of the problem of optimal control of the annealing stage of polymerase chain reaction will
help to minimize the necessary time for the implementation of this stage. The scheme of temperature setting thus
constructed minimizes the required time of implementation of the annealing stage, which in the general case will
ensure the achievement of the minimum time for polymerase chain reaction.

Key words: polymerase chain reaction; annealing stage; optimal control; the Pontryagin maximum
principle.
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Statement of the problem. Polymerase chain reaction (PCR) is the method of
molecular biology based on the significant increase of small concentrations of deoxyribonucleic
acid (DNA) fragments in biological material by means of amplification. PCR is widely used in
biological and medical practice for cloning genes, mutations diagnosis, new genes allocation,
sequencing, and genetically modified organisms creation and determination [1, 2].

Analisys of the available investigation results. PCR reaction is based on multiple
replication (selective amplification) of the investigated DNA by DNA polymerase enzyme. The
generated DNA copies are identified by electrophoresis.

While carrying out PCR, 20—35 cycles [1] are performed, each of them consists of three
stages.

The double-stranded DNA matrix is heated to 94-96°C (or up to 98°C, if specific
thermostable polymerase is used) for 0.5—10 min, so in order to divide DNA chains. This stage
is called denaturation — decomposition of hydrogen bonds between two chains. Sometimes
before the first cycle, the reaction mixture is preheated during 2—5 minutes for the complete
denaturation of the matrix and primers.
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When chains split, the temperature is reduced so that the primers can bound the single-
chain matrix. This stage is called annealing. The annealing temperature depends on the primers
and is usually selected at 4-5°C than their melting point. The stage time is 0.5—2 min.

DNA polymerase replicates the matrix chain using the primer as inoculation. This is the
so-called elongation stage. The elongation temperature depends on the polymerase. The most
commonly used Taq i Pfu polymerase are the most active at 72°C. The elongation time depends
on both the type of DNA polymerase and the length of the fragment which is amplified. The
average elongation rate — 1000 base couples for 1 min. At the end of all cycles, the additional
stage of final elongation is often carried out to complete all single-strand fragments. This stage
lasts 10—15 minutes.

In order to carry out efficient PCR, it is necessary to provide multi-stage cyclic mode of
temperature change. Figure 1 shows the example of the temperature regimes setting for
respective PCR stages in the software of Rotor-GeneTM 6000 thermal cycler.
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Figure 1. The PCR stage temperature regimes setting in Rotor-GeneTM 6000 thermal cycler software

Each cycle stage (denaturation, annealing, elongation) should occur at certain
temperatures during the given time. Otherwise, the necessary DNA molecules transformations
may not occur.

Many papers [2—7] represent the models of different PCR stages, but for more effective
use of PCR methods, it is efficient to carry out the investigations of data management models.

The objective of the work is to develop the numerical algorithm for optimal control of
the stage polymerase chain reaction annealing stage.

Statement of the problem. While developing the numerical algorithm, it is necessary
to use the mathematical model of annealing stage of polymerase chain reaction taking into
account the process of primer addition to the single-stranded DNA, direct and inverse reaction
rate constants. It is necessary to construct the compartment model of annealing stage.

For the annealing stage, the condition for obtaining as many single-stranded DNA as
possible bound with the primer must be taken into account, while using the smallest primer
amount. It is efficient to develop the direct method of numerical solving of the problem of
optimal investigated stage control. It is necessary to obtain the results of numerical simulation
of the problem of optimal control of annealing stage polymerase chain reaction in the form of
graphs. The dependences of the single-stranded DNA amount, primer, single-stranded DNA
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buond to the primer, as well as the optimal temperature value of the annealing phase of polymer-
chain reaction on time should be presented.

Thus, the problem of mathematical modeling and corresponding calculations is to
estimate the minimum time required for annealing stage implementation, which in general will
ensure the attaining the minimum time for PCR.

The results of the investigation. Mathematical modeling of PCR annealing stage.

At the annealing stage, the mixture temperature is reduced to 55°C, the primers are
bounded to the single-stranded DNA target. The primers are chosen in such a way as to restrict
the desired fragment and are complementary to opposite DNA strands

The simplified chemical equation describing the process of p primer bounding to the

single-stranded DNA s can be represented as follows:

kl ’ k—l

s+pos )

As the result of annealing stage, one-stranded DNA bound to primer s’ is formed. In
equation (1) k, and K _, are direct and reciprocal reaction rate constants for annealing.

Using equation (1) let us construct the annealing compartment model in the following
form (Fig. 2).

k. p
S k., p S

A 4

A

Figure 2. Compartment model of PCR annealing stage

It is evident from Fig. 2 that the direct constant of the reaction rate for annealing K,

benefits to the formation of single-stranded DNA bound to the primer. The constant K,
simulates the inverse reaction of the investigated stage, at which the primers fall apart the

previously formed single-stranded DNA bounded with primer s'.
The temperature mode of PCR annealing stage of is chosen in such a way that

k, >>k .
Theoretical foundations of PCR optimal control. In the problems of PCR optimal
control due to the temperature, a variety of controls is considered:

U={u(t):a<u(t)<b, t <t<t,, u(t)—measured}.

Here a,b,t,t, > 0.
It is assumed that the state of the system X(t) € R" under the given control U e U is

determined by the system of ordinary differential equations:
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ax(t) _
i f(t,x,u), @
X(to) =X

where f:RxR" xR — R" is continuous and has continuous first partial derivatives
relatively to x and u . Since it is assumed that u(t) is measurable and limited, then the right-

hand part of the system (2) is continuous relatively x and is measurable only relatively t to the
fixed Xx. Thus, the solutions (1) are absolutely continuous functions satisfying (2) almost
everywhere. Under such conditions of solution (2) existence X(t,u)is proved in papers [8, 9].

The problem of optimal control includes the quality criterion J[u]as:

J[u] = tj L(t, x,u)dt + #(x(t,)),

where L is the given real-valued function and ¢ is continuously differentiable real-valued
function. The objective is to find U~ €U control such as

J[u=inf J[u]. 3)

When the model is described and the quality criterion is determined in the theory of
optimal control, a set of problems [10] is formulated:

- proof of the optimal control existence;
description of the optimal control construction;
proof of the optimal control unigueness;
numerical calculation of optimal control;
investigation of the optimal control dependence on model parameters.

Sufficient conditions of the optimal control existence for the problem (2)—(3) without
terminal component in the quality criterion are given in papers [10, 11].

Theorem 1. The problem of optimal control (2) — (3) on the fixed interval [t,t,] is
considered. Let us assume that:

1) there is such constant M >0 that [X(t,u)||< M forall ueU and t, <t <t,;

2) L is semicontinuous at the bottom;

3)set DT :{(yo,y):HVEU, y = f(t,Xx,v), y0 > L(t,x,v)} is convex for
(t,x) e [tl,tz]x{‘x‘ <M}

Then there is optimal control U™ €U .

The description of the optimal control construction for problem (2)—(3) gives the
principle of Pontryagin's maximum with the terminal component [12, 13]

Theorem 2. Suppose U™ €U is the optimal control in problem (2)—(3). Then there is
the conjugate function A:R — R"such that X(t,u”), u”, 4 satisfy the system:
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dx(t) .
& f(t,x,u), @

X(tl) =X

and the conjugate system:

dA(t) __oH _ —L,(t,x,u") =T £ (t,x,u"),
o > )

A(t,) =¢'(x(t,)), condition of transversality,
where Hamilton-Pontryagin function is given as follows:
H(t,x,u) = L(t,x,u) + A" f(t,x,u). (6)
The problem of optimal control of PCR annealing stage.

The problem of optimal control of PCR annealing stage proposed in paper [7] is
considered:

ds
—=—k,ssp+k_ s
dt SR
dp

=-k;sp +k_ s’ 7
ot p+k. (7)
d—i =k,;sp +k_s'

In the system (6): s is the single-stranded DNA, p is the primer, S’ is the single-

stranded DNA bound to the primer, K, k_, are direct and reverse reaction rates for annealing.

While performing PCR annealing phase, the temperature is the controlling effect [4, 5].
The dependence of the reaction rate k on the absolute temperature T is described by Arrhenius
equation [14]:

k=Ae™"", (8)

where A characterizes the molecules collision frequency, R is the universal gas constant, E_

is the activation energy.
By reference to Arrhenius equation (8), the system of differential equations for the

annealing stage (7) can be specified as follows:

as_ —keTsp+keTs

dt

P eTspak e 9
dt - 1 p -1 ( )
as’_ keTsp—k.eTs

dt
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with the corresponding initial conditions:

S(tl) =S, p(tl) = Py S'(tl) =S,. (10)

E
In the system of differential equations (9) r = Ra is the constant.

Let us consider T =T (t) as control function.

Let us assume that T (t) e [T,™, T."*].
The objective of the annealing stage is to obtain as many single-stranded DNA as

possible which are bound to the prime " with the smallest amount of primer p consumed, i.e.:
n _ ; r2 _ 2 H
I(s. P ) = (8" () -Wp* (D) dt — inf (11)

Here W > O is the weight coefficient, U is the set of piecewise continuous functions

T (t) c [-I-emin ’ TemaX] )
Biologically significant area is:

Q, =(s, p,s’)eR’ (12)
imposing phase restrictions:

s>0, p=>0,s">0 (13)

So, the objective is to determine the optimal control T~ e U that satisfies:
J[T1=inf I[T]. (14)
On the basis of Theorem 1, it is evident that optimal control in problem (7)—(14) exists,
since the subintegral expression in the quality criterion is the convex function, and the system

trajectory belongs to space L™ .
Let us apply Theorem 2 to obtain the necessary optimality conditions. Hamilton-

Pontryagin function is as follows:

H=s?-Wp”>+A(-ke "sp+k e Ts)+

r r r r (15)
+A,(—ke Tsp+k.eTs)+ A, (ke Tsp-k eTs)
Hence, we get the conjugate system from Theorem 2:

di,  oH L

t=———=keTp(4+4, -1
o o e TP -4
di, oH = ,

2=———=2Wp +ke "s(4, +4, - 4, 1
& o p ( ) (16)
dk:—a*zhéﬂg—a—zg—m’
dt 0s'
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Let us denote:

D(t)= A, (-ke Tsp+k e Ts)+

r r r r (17)
+A,(-ke Tsp+k e Ts)+ A, (ke Tsp—k eTs
Taking into account (17) Hamilton-Pontryagin function (15) is written as:
H=s?-Wp’+e "[®(t)]. (18)

Here we see that the maximum values H will be reached at T =T (t), where:

T, for @(t) >0
T7(t) =T, for &(t) <0 (19)
v [t T, for a(t) =0

Thus, the optimal trajectory (S*, P, s'*) for control T~ can be constructed as the
result of the boundary problem solution:

E=—kle?sp +keTs
dt
dp — =,
E:_kle Tsp+k.,e's
(jjst —ke "sp—k.es
dA oH = (20)
dtl :—EZ kle T p(ﬂ/1 + 12 - 13)
dA oH -
dt2 :—g: 2Wp + ke Ts(4, +4,—-4,)
di, oH e
=——=k.e" (4, -4 -4,)-2¢
dt os’ (= A= 4)

With boundary conditions:

S(tl) =S p(tl) = Po» S'(tl) = Sc’>; )z’l(tz) =0, ﬂ“z (tz) =0, ﬂs(tz) =0.
Theorem 3. For sufficiently small value t,, the system solution (20) is unique.
Proof. Let us assume, on the contrary, that there are two solutions (20), i. e.:

X =(s",p,s" A, A, A4,)i
X" =", p", s A A4, L4 ).

ISSN 2522-4433. Bicuux THTY, Ne 1 (93), 2019 https://doi.org/10.33108/visnyk_tntu2019.01 ................c.occceo.oo... 153


https://doi.org/10.33108/visnyk_tntu2019.0

Numerical algorithm for optimal control development for annealing stage of polymerase chain reaction

The right-hand parts of system (20) are Lipschitz functions of arguments
s,q,s’, 4, 4,, 4,. Hence, there is such constant C >0 that:

[ ©-x" o= Icx ©-x"©)s @1)

Applying the mean value theorem to (21), we have that there exists such time moment
St <& <t, that:

X" ®-X"®)| <t,C(X"()- X&) (22)

1
forall t €[t,,t,]. If we chose t, in such a way, that t, < c then we get the contradiction.

Numerical calculation of optimal control. Methods of numerical solution of optimal
control problems can be classified as direct and indirect [15, 16]. These methods differ in
approaches for finding the solution of the optimal control problem. Indirect methods tend to
solve the boundary problem of the required optimality conditions. On the contrary, direct
methods do not need the direct construction of the required conditions. Direct methods do not
build the conjugate system, control system and transversability conditions. Investigating
optimal control, both approaches are used. The main disadvantage of using indirect methods is
that even knowing exactly the acceptable state and control, there is no guarantee that the
calculated solution will improve the known one. Moreover, the indirect method requires initial
approximation values for conjugate variables, and the numerical solution of the conjugate
system in practice is ill-posed problem [17].

For this reason, we have used the direct method proposed in paper [18], which makes it
possible to find numerical solutions of the problems that are even more general from (7) the
statement.

Statement of the optimal control problem for the direct method. The control system for

phase coordinates X(t) € R", control vector T (t) € R"and unknown parameters p € R"™ is
considered.

dx(t)
- = f tl 1T1 y

dt (t.x P) (23)
X(to) =X

Restrictions on the state of the system, control and parameters are imposed as the
following equations:

c(t,x,T,p)=0, te[t,t,], (24)
where c(t,X, T, p) € R™, as the following inequalities:

d(t,x,T,p)<0, te[t,t], (25)
where d(t,x,T, p) e R™,
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restrictions on the system state at the final time moment and parameters are as follows:
'//(X(tz) p) =0, (26)

where w (x(t,), p) e R™,
as following inequalities:

y(x(t,)p) <0, (27)

where ¥ (x(t,), p) e R"™.

The task is to find control T (t) € R"and parameters p € R"" which minimize the
quality criterion:

IMT, pl= [L(tLX,T, p)dt + 4(x(t,), p).

that is:

T p1=_inf J[T,p]. (28)

T,pe(16)-(19)

It should be noted that stating problem (23)—(28) we assumed that t, is fixed, this

problem can be adapted to the optimal velocity problem. This can be done by normalizing the
time variable t and putting the unknown final time as the parameter.

Numerical method. The method lies in the fact that the infinite-dimensional problem of
type (7) is reduced to the finite-dimensional optimization problem.

This is achieved by discretization the time interval t €[t ,t,] using N nodes t; such
ast =t <t, <..<t, =t;.

At each time moment t; the control is the unknown scalar vector T, € R™. At each open

interval t € (t;,t;,,), 1 =0, N — 2 control approaches by the following linear approximation:

t—t
t —t

i+1 i

T =T+ (T..-T). (29)

A set of control vectors in nodes t; models the common vector:
T =[T, . T T (30)

For the given initial approximation U , we can integrate (27) on t € [t,,t,] and get the
trajectory X(t,f, p). Thus, the infinite-dimensional problem (23)—(28) is approximated by

finite-dimensional nonlinear programming problem relatively T, p:
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I(T,p) = L X(AT, p). T, )t + 4(x(t,, T, p), p) > i . @)

with restrictions:
¢ =[c(ty) ety 1) '] =0 (32)
d =[d(ty)"....d(ty_1)".7"]" <O (33)

and u(t) is approximated.

Software implementation. The above mentioned direct method of numerical solving of
optimal control problem is implemented in Java-knacis dyn.Opt [18]. In order to use this
method in healthinsurance package, a separate process is started in the try-block:

try {

Process p = Runtime.getRuntime().exec («java dyn.Opt»);
¥
catch (java.io.lOException ex) {
System.err.println(«Problems invoking class dyn.Opt:»+ex);
}
Problem (7) was considered as an example. The problem description was made due to
the input text file. So the system variables were by command:
statesps_
control variable:
control T
constants:
real kone kminusone r W
number of time zones:
nodes = 365
method of nonlinear programming problem solution:
method = dyn_sqp
method of differential equations system integration:
ode = huen
file for output data:
output_file = temperaturecontrol
accuracy of the method:
epsilon = 1.0e-6
The control system (7) with the parameter values is described in the block:
dynamic_equation:
kone = 0.205
kminusone = 0.01025
r=0.02
ddt s = -kone*exp(-r/T)*s*p + kminusone*exp(-r/T)*s_
ddt p = -kone*exp(-r/T)*s*p + kminusone*exp(-r/T)*s_
ddts_ = kone*exp(-r/T)*s*p - kminusone*exp(-r/T)*s_
Initial conditions block:
initial_condition:
s = 10000000

156 ........ ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (93), 2019 https://doi.org/10.33108/visnyk_tntu2019.01


https://doi.org/10.33108/visnyk_tntu2019.0

Andrii Sverstiuk

p = 1000

s =0

Inequality type restriction:
inequality_constraint:
d=-T+330 #-T<=330
d=T-367 # T <=367
Quality Criterion Block:
cost_functional:

W =0.2
initial_time = 0.0
final_time = 30

L=s *s - W¥*p*p
Data concerning method application are listed below.
The results of nonlinear programming problem solution (23)—(28) are presented in
Fig. 3-6.
s-10°, copies/reaction

10

. . . : I s
0 20 40 60 30 100

Figure 3. Numerical simulation of the optimal control of PCR annealing stage: change in the amount
of single-stranded DNA
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Figure 4. Numerical simulation of the problem of optimal control of PCR annealing stage:
change of primer quantity
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5'-10°, copies/reaction
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Figure 5. Numerical modeling of optimal control of PCR annealing stage: changes in the amount of single-
stranded DNA bound to the primer
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Figure 6. Numerical simulation of the optimal temperature value of PCR annealing stage

Analyzing the results of numerical modeling of problem of the optimal control of PCR
annealing stage, it is possible to control the changes in the amount of single chain DNA,
primer, and also changes in the number of single-stranded DNA bound during 30 seconds
(Figures 3—6).

Using the result of numerical simulation of the problem of optimal control of PCR
annealing stage by temperature (Fig. 6), it is possible to obtain as much DNA single-stranded
bound to the primers’ as possible with the smallest amount of primer p consumtion. The

obtained dependence makes it possible to minimize the required time for annealing stage
implementation, and can also be used for developing the new test system for PCR.

Conclusions. The problem of optimal control of PCR annealing stage is stated. The
Pontryagin maximum principle is applied to the optimal control problem and the required
optimality conditions are formulated. The obtained results are the theoretical basis for
numerical calculation of the investigated stage optimal control.
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The constructed scheme of temperature setting minimizes the required time for
annealing stage implementation, which in general case will ensure the achievement of the
minimum time for PCR.

It is necessary to investigate the control of other PCR stages in further researches.
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YUCEJIBHUI AJITOPUTM IMOBYJOBHA ONITUMAJIBHOT'O
KEPYBAHHS CTAIEIO BIAMIALY
HOJIMEPA3HO-JIAHI[IOTOBOI PEAKIII]

Anapiit CBepcTOK

TepHoninbcokuil Oepacasruil meouuHuti yHieepcumem im. 1. A. I'opbauescovkoeo,
Tepnoninw, Yrkpaina

Pe3tome. 3acmocosano 3a2anvHy MemooOoOn02it0 Kepy8awHs Ol OMPUMAHHA PO38 A3KYy 3a0ayi
ONMUMALHO20 nepebicy cmaodii 6iONALy 6 NONIMEPAZHO-TAHYI2061l PeaKyii 3 Memor eqheKmueH020 NPOBEOCHH
00CIOACYBAHOT Ma MONCIUBICMIO 3abe3neueHHs: 6a2amocmaoilino2o YUKIIUHO2O PelCUMy 3MIHU MeMNepamypu.
Jocniosicysana cmadisn 6ionany noguHHa 8i00Y6AMUCS NPU NeGHUX MeMnepamypax ma npomseom 8iono8ioHo2o
yacy, OCKINbKY 8 IHUOMY 8UNaoKy HeoOXiOHux nepemeopetv monexyi JIHK mooice e 6i00ymucs. Buxkopucmano
Ppo3pobneny modenb cmadii 8iOnaLy NOAIMepa3HoO-1aHY1020801 peakyii, AKa 8paxo8ye CnieIOHOWEHHA KilbKOCMI
oononanyrweosux JHK, npaiimepy, oowonamyrocoeux JHK 36’azanux 3 npaiimepom, npsmoi ma 360pomHOL
weuoxocmi peakyii 0as gionany. Y oocnioaxcysanii modeni suxopucmano piensanus Appeniyca, sike 8paxogye
3anedcHicmb  weuoKocmi  peaxyii 6i0 abcomomHol memnepamypu. 3acmoco8aHO NPUHYUN  MAKCUMYMY
Ilonmpsieina 0o 3adaui onmuManbLHO20 KepysauHs cmaodii 8ionamy ma coopmyrvLosano HeobXiony ymosy
onmumanvHocmi. Po3pobneno npsamuii Memoo 4YuceibH020 pO38 s3V8aAHHA 30A0ayi ONMUMAILHO2O KepyGaAHHs.
cmaoii gionany, Axuil peanizosano 6 naxemi Java-xnacie. YV euensoi epagixie npeocmasneni pesyivmamu
YUCENbHO20 MOOCTIO8AHHS 3a0aii ONMUMAIbHO20 KepYyS8aHHs cmaodii 8ionany noliMepasHo-IaHy2080i peaxyil
0ns 3minu Kinbkocmi oononanyioeosux /[HK, xinbxocmi npatimepy, 3sminu kinbkocmi oonoaanyiocosux JJHK, saxi
3’€0HaHI 3 Npaumepom, ma ONMUMAILHO2O 3HAYEHHS Mmemnepamypu 0ocriodcyeanoi cmaodii. Ompumani
pe3yabmamu  YUcenbHo20 MOOeNI08AHHA 3aA0ayi ONMUMANLHOZO KepYBaHHA cmaodii 8ionany noximepasHo-
JIGHYI020601 peakyii 00noMoicymsy MIHIMIZyeamu HeoOXiOHUl yac peanizayii danoi cmaodii. Ilobyoosana maxum
YUHOM CXeMA 3A0ABAHHS MeMNnepamypu MiHiMi3ye HeoOXiOHUll yac peanizayii cmadii 8ionany, wo 6 3a2aibHOMy
8UNAOKY 3a0e3nedums 00CACHEeH s MIHIMATbHO20 YACY NPOBEOeHH s NOAIMEPA3HO-TAHYI20801 peakyii.

Knrouosi cnosa: nonimepasna nanyro2osa peaxyis, cmaois 6ionany, ONMUMAaibHe Kepy8aHHs, NPUHYUn
maxcumymy I[lonmpseina.
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