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Summary. Thin-walled cylindrical tubes are used not only as structural elements but also cause great
scientific-practical interest for modeling the behavior of structural elements with different geometrical shapes
under complex stress state. The prediction technique for thin-walled cylindrical tubular samples of metal isotropic
materials loaded by internal pressure and axial tensile strength is proposed in this paper. The investigation was
carried out within momentless theory for large residual deformation areas. The material was considered to be
isotropic and incompressible. Elastic deformations were neglected. The realization of Kirchhoff-Love hypothesis
of thin-walled shell theory is accepted. The equilibrium boundary conditions of plastic deformation were obtained
analytically. In order to derive the boundary relationships between residual relative strains and real stresses
Dorn-Nadai conditions of the beginning of deformation localization process were used. The influence of stressed
state and thin-walled tube geometry on the boundary real stresses and residual deformations values is observed.
The analysis of the obtained conditions showed the decrease of the material strength resource when the values of
primary stresses ratios approach to 0.5 and 2. It is proved analytically that with the reduction of the tensile strength
and approximation of stressed state to the «internal pressure» type the strength resource of the thin-walled
cylindrical tube sharply decreases.
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Introduction. The thin-walled cylindrical tubes besides their direct use as structural
elements are of great scientific-practical interest for modeling the behavior of the structural
elements with different geometrical shapes under complex stress conditions. The experimental
investigation of deformation mechanisms and materials fracture along with the improvement
of phenomenological approaches to the estimation of the boundary states of the thin-walled
cylindrical structures or their elements remains an important problem of deformable solids
mechanics.

Statement of the problem. Most investigations of the boundary state of material
samples under complex stress state are reduced to the construction of the strength criteria or
equivalence conditions under engineering stresses. The suitability of the proposed criteria is
substantiated on the basis of data bank obtained mostly from experiments on thin-walled
cylindrical tubes loaded by the internal pressure and axial tensile force. Such approach makes
it possible to model multioption biaxial stressed states in the structure walls predicting
maximum loads and the greatest uniform deformations. At present there is a large number of
such criteria quite comprehensive review of which is given in papers [1, 2, 3]. However,
nowadays there is no theory or criterion that uniquely determines the boundary stress values for
certain material under complex stress state. On the other hand, with the appearance of new
computer technique and growth of its calculation abilities, development of new constructional
materials and the need to take into account new conditions of structures operation the
requirements to the accuracy and reliability of the calculated boundary values of the stress-
strain state indices of the structural elements are constantly increasing. Therefore the problem
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of the estimation technique for structural elements boundary states still remains important for
deformable solids mechanics

Analysis of the available researches and publications. Depending on the loading
conditions the material can be in different mechanical states — elastic, plastic or fracture. The
material stresses state where the qualitative changes in the material properties occur - the
transition from one mechanical state to another is called boundary. The problem of prediction
the occurrence of the boundary states of cylindrical shells under complex stress state is
concerned in many experimental investigations described in the available literature [4—7]. T he
basic theoretical statements and formulae for determination of stresses in the cylindrical tube
wall are given in [8]. The authors Middleton J., Owen DRJ., Blachut J., Zhu L., Boyle JT.,
Carbonari, R. C., and others proposed the developments for optimization of thin-walled
axisymmetrical shell profiles loaded by internal pressure with additional loading conditions [9—
12]. However the problem of the shell geometry influence on their strength characteristics is
not sufficiently investigated.

The objective of the paper is to develop the technique for obtaining the conditions of
boundary state occurrence in thin-walled cylindrical tubes under the action if internal pressure
and axial tension for large residual plastic deformation area; to observe the influence of the
stress state and geometrical characteristics of tubular samples on the strength indices.

Statement of the problem. The paper deals with considerable uniform plastic
deformations in the tube operating part to which tensile axial force N (in tube z axis direction)
and internal pressure g are applied. The realization of Kirchhoff-Love hypothesis of thin-walled
shell theory is accepted [13]. The shell material is considered to be isotropic and
incompressible.

Let, R be the radius of the middle surface of cylindrical tube with thickness h, &, ¢, i
¢, are axial, circular and radial relative residual deformations respectively.

True axial o, and circular o, stresses are determined by relations (1), (2), as
shown in [14]:

2
N N +(R(1+59)—2(1+5r)j q o
* 27zR(1+¢,)h(l+é,) 2R(1+¢,)h(1+¢&)

q(R(1+59)—2(1+gr))

h(l+¢,)

)

O-g:

For the given problem statement according to the accepted suppositions the radial
stresses in the tube wall are neglected: o, =0.

When the loading reaches its maximum value as the result of the cross-section area
reduction and decrease of the strengthening module value of the process the uniform
deformation development stops and the process of deformation localization with neck
formation starts. In this regard the load starts decreasing, the process of steady uniform plastic
deformation is broken. Such correspondence between the maximum loads and local
deformations occurrence accepted in papers [15, 16, 17], is called as Dorn-Nadai conditions.

This approach used by the authors in papers [18, 19, 20], is analytically expressed by
one of the conditions: dg=0 @ dN =0.

Let us consider hoth cases.
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1) Finding the dependence between the boundary circular stresses and strains.
Let us use condition

dg=0. 3)
From (2) we express q:
q= oph(1+¢,)
- ' 4
R(1+80)—2(l+8r) )
Suppose the load is proportional i. e.
O-Z
=K.
o (5)

Extending the effect of the generalizes Hooke law to the area of plastic deformations
with Poisson coefficient x = 0,5, we get

==n, (6)
where
n=——-. (7

Let us use the material incompressibility condition for the area of large plastic
deformations:

(1+&)(1+¢y)(1+¢,)=1. (8)

Taking into account R=const i h=const as initial values as well as
dependences (4)—(8), from (3) we derive the differential equation of the first order:

oq aq
do, + de, =0
o ¢ 0&y 0 ©)

or, substituting the partial derivatives,

1 d%_%2(1+gg)(1+ngg)+n(1+ggz)2

2 h
(1 20)" (1) = 5 (@regP@eney)- 51 )

The general equation integral (10):
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oy =C9{(1+ 39)2 (1+ ngg)—%] (11)

Condition (11) determines the values of circular stresses and circular deformations
corresponding to the moment of the tube plastic deformation resistance loss from the internal
pressure g action. Since under cylindrical tube loading by internal pressure, the residual circular

deformations &, >0, then its smallest value for 0,5<k <2, relatively at n e (0;0), the

boundary circular stress o, will be acquired at n~0, which is in an agreement with the

accepted relation (7).
The lines in the coordinate system o, : &, being the geometrical interpretation of condition

(11), are called boundary conditions curves or boundary curves.

The integration constant is found from experiments for k=0,5. In this case
condition (11) is as follows

oy =Cy |:(1+ &g )2 - %} . (12)

Let us accept the notation

h

=2 (13)

We apply formula (12) for deformations localization area, defining  — 0, and get
oy =Cy(l+¢, )2 . (14)
Condition (14) coincides with the condition derived for the determination of boundary
circular stresses in the cylindrical tube in [20].
2) Finding the dependence between the boundary axial stresses and strains.
Let us use condition
dN =0. (15)

We use equation derived from (3) and (4):

N :27th(1+£9)(1+5r)0'Z[1—%[1—%}]. (16)

Let us find complete differential and apply condition (15):

oN oN oN
Zdo,+—de, +—de, =0.
oc, ' og, U o (17)

When partial derivatives and identical transformations are found, we derive the equation
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1-1 h(1 h(1
2k d59+{1 !, (A+er) } ds; j{l L [1— (L+2) Hdgz=0.

1+¢, T2k 2kR(L+s,) |L+s | 2k 2R(l+s,))| o,
Let us use the incompressibility condition (8) and notation (6):
1_i 1 h(l+¢) ||do, :(1_ij de, h(l+¢) de |
2k 2R(1+¢y) )| o, 2k J1+&, 2kR(1+&5)1+¢,
{1 L (1 h(+e) }]daz =|:1 L. h(1+e) }dgz + h(l+s) de,

2| 2R(1+gy))| o 2k 2kR(L+sy) [1+e, 2knR(L+gy)l+le,’

z

For uniform plastic deformation areas we consider the change of wall thinness
insignificant in comparison with residual deformations in direction towards the force
application axis, i. e.

h(l+&) h
—_— . (18)
R(1+¢&,) R
Finally we get:
[1_i+Ldez= (l—i+ hj ! + h L de,. (19)
2k  4kR ) o, 2k  2kR)1+s, 2knR1+1lg,

Taking into account notation (13), the general equation integral (19) is the following:

1
&, =C, [(1+ 82)2(2k—1+17) (1+ %82)277:|4k2+77 . (20)

The integration constant is found from the experiments of uniaxial tension of the
cylindrical tube only by tensile strength. Under plastic-elastic conditions approximating to the

uniaxial tension (k — ) the condition is simplified to the following form

o,=C,(1+¢,). (21)

Condition (21) coincides with that derived for biaxial tension of the thin-walled cylinder
by axial force and internal pressure which we obtained in [20]. Formula (21), obtained for the
case of uniaxial strip tension and biaxial plate tension, given in the same source.

The boundary line in this case is the line with angular coefficient numerically equal to
the integration constant.

Let us write the conditions in the form:
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Oy = Cg|:(1+ 89)2 (1+ nga)—%]
L (22)
o, = Cz |:(]_+ 82)2(2kfl+77) (1+ %EZ )2’7:|4k—2+;7 |

When k =1 we get

oy :Cg[(1+ 89)3 —%}

2(1+27)
0,=C,(1+¢,) 2+

(23)

The index of thinness » affects the value of both boundary stresses. It is evident from
the first formula of system (23), that the increase of index »n decreases plastic-elastic resource
of the tube in circular direction. For tubes with arbitrary ratio of the wall thickness to diameter
ne(0:3) {2(;2’7)} o is realized, that is why the second formula of the system (23)

n
analytically confirms the increase of boundary values of axial stresses with » growth.

Finding the integration constants for boundary conditions (11), (20)
Condition (11) is analytical expression for finding the boundary circular stress in thin-

walled cylindrical tube for case o, > o,, condition (20) is boundary axial stress for case
o, >0o,. If both main stresses are o, >0 ta o, >0, then conditions (11) and (20) are
boundary conditions for stress states with the main stresses ratio k =0,5...2.

In order to find integration constant C, in general integral (11) we consider the partial
case of the occurrence of the boundary state of the plastic deformation of the cylindrical tube
loaded by internal pressure g, in this case k=0,5. The boundary circular stresses and
deformation ¢,°, o,” correspond to the moment of sample fracture in case with material brittle

state and beginning of the deformation localization in case of material plastic state.

The results of the experiments for cylindrical thin-walled steel samples are used as the
example and are given in [14, 18, 20]. The chemical composition, thermal pre-treatment of the
samples and experiment conditions are also described there. The values of the integration
constants are given in Table 1.

Table 1

Calculation of the integration constants values for condition (12)

Material arad HR b b c Determined
aterial grade n=h/ &g oy " stresses o, /Cg
Steel 0,23%C 0,078 0,150 595 MPa 463,6 1,28
Steel 0,37%C 0,048 0,063 665 MPa 594,8 1,12
Steel I0GN2MFA 0,06" 0,036 705 MPa 666,2 1,06
Steel 15Kh2MFA 0,067 0,021 746 MPa 727,3 1,03
Steel 15Kh2NMFA 0,067 0,024 745 MPa 722,0 1,03

*the average value for common ratio 7 = h/R for thin-walled shells with 7=0,04..0,08 is taken
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Similarly on the basis of the boundary stresses and boundary residual deformations
o,=0,", &, =¢,"° of cylindrical tubes under plastic deformation for the main stresses ratio
k =2 the integration steels C, for condition (20) are determined. The calculation values are

given in Table 2.

Table 2

Calculation of integration constants values for condition (20)

Material arad H/R b b c Determined
aterial grade n=nh/ £, o, . stresses o,” /Cz

Steel 10GN2MFA 0,06 0,043 | 722 MPa 691,9 | 1,04

Steel 15X2M®A 0,067 0,042 830 MPa 796,2 1,04

Steel 15Kh2MFA 0,067 0,03 800 MPa 776,5 1,03

Steel 28 Kh 3SNMVFA | 0,06* 0,016 2020 MPa | 1987,9 | 1,02

*the average value for the common common ratio 7 = h/R for thin-walled shells with 7=0,04..0,08 is taken

Graphic investigation of conditions (11) and (20)
The graphs of the strength loss conditions (11) of cylindrical tube for the case o, > o,

were constructed for three values of the main stresses ratio in the range 0,5...1 and thinness
index 7=0,067 (Fig.1,a). The amplitude of the values of relative conditional residual
deformations «,” and determined stresses o,” /Ce were chosen according to Table 1.

The graphs of the strength loss conditions (20) for the case o, > o, constructed for the
values of the normal stresses ratio in the range 1...2 are shown in Fig. 1, b. The amplitude of
the values of relative residual deformations ¢, and determined stresses o, /CZ and value

1 =0,067 were chosen according to Table 2.

Graphic representation of the conditions (11) at different k Graphic representation of the conditions (20) at different k

L1
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. k=08 B} 12
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6.02 0.03 0.04 0.03 [}.DZ 0.03 0.04 0.03
deformations deformations
a) b)

Figure 1. Graphic representation of the strength loss conditions at different K : a) condition (11) for the case
oy > 0, b) condition (20) for the case o, > o0y

Analysis of the graphical images of conditions (11) and (20), performed for the cases
cy>0,>0 (Fig.1,a) and o, >0,>0 (Fig.1,Db) respectively, showed the decrease of
material strength resource while approximating the main stresses ratio values to 0,5 and 2,
increasing at k — 1. It should be noted that when the impact of tensile strength decreases and
stress state approximates to the «internal pressure» form the strength resource of the thin-walled
cylindrical tube sharply decreases.

In order to observe the influence of the thinness index » of the cylindrical tube on the
values of boundary residual deformations and true stresses a series of graphs were constructed
where the index of stress statek and specified parameter were recorded.
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The boundary curves described by condition (11) at main stresses ratios k =0,5 ta k =1
are shown in Figure 2. Parameter » was given the values 0,04; 0,06 and 0,08.

Graphic representation of the conditions (11) at different 1)

- 1=0,04
n=0.06
— n=0.08

Graphic representation of the conditions (11) at different 1)

~- m=0,04
L[ n=0.06
— n=0,08 -

recluced tension
reduced tension

=

S
=
=
=1
&
2L
®

0.03

deformations

a) k=0,5

deformations

o) k =1

Figure 2. Graphic representation of the dependence (11) of boundary circular stresses %6 and residual

deformations €0 on parameter n

Graphs analysis (Fig. 2) showed the decrease of the calculation strength resource of the
cylindrical shell with the increase of values » in both cases. The boundary stress is achieved at

lower level of residual plastic deformations if the ratio of the initial wall thickness of the tube
to its initial radius is larger. | t should be also noted that at k = 0,5 a certain level of the relative

residual deformations is reached by lower stress level than at k =1, that is for the same thinness

index n the tube resource is decreased while approaching the value k = o, / o, 10 0,5.

Boundary curves

described by condition

(20) for main stresses ratios

k =1,0;1,2;1,5;1,9 are shown in Fig. 3. Parameter 7 is given values 0,04; 0,06 and 0,08.

Graphic representation of the conditions (20) at different 1

Graphic representation of the conditions (20) at different 1)
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Graphic representation of the conditions (20) at different 1) Graphic representation of the conditions (20) at different n)
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Figure 3. Graphic representation oft he dependence (20) of boundary axial stresses ¢, and residual

deformations &, on parameter 7 at different k
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Analysis of Fig. 3 showed that strength resource of the cylindrical tube under conditions
of loading by internal pressure and axial tensile force is slightly higher while increasing the
initial ratio  =h/R for values k, close to 1 (Fig. 3, a, b), and are practically independent on
ratio h/ R in case when stresses o, are determining and precede the cylindrical sample neck
formation (Fig. 3, c, d).

Conclusions and prospects. The developed technique makes it possible to predict the
behavior of the thin-walled cylindrical tubular samples made of metal isotropic materials loaded
by internal pressure and axial tensile force taking into account the results of two experiments —
loading by internal pressure P and uniaxial tension by force N; the boundary conditions of the
plastic deformation boundary equilibrium are obtained.

Analysis of the investigation results showed that the level of boundary stresses and
residual plastic deformations depends not only on the values of boundary axial and circular
stresses and strains but on the type of stress state, by represented in the paper coefficient k and
tube thinness index 7 . Generalization of the proposed technique for axisymmetric thin-walled

shells of the form makes it possible to apply it for the wide range of structural elements made
of isotropic plastic-elastic materials operating under complex stress conditions.
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METO/IUKA NTPOI'HO3YBAHHSA T'PAHUYHUX CTAHIB
TOHKOCTIHHUX IUJITHAPUYHUX TPYBOK

I'aanna Ko3oyp

Tepnoninbcokuu Hayionanrbuuu mexHivHuu ynigepcumem imeni leana Ilynios,
Tepuonins, Ykpaina

Peztome. Ilepesadicna b6invuiicms KOHCMPYKMUSHUX eNeMEHMI8 ma anapamis, ujo 3acmoco8yiomvbCsl 6

agiabyoyeanti, cyOHoOyO0y8aHHi, XapuOSIl, XIMIYUHIU MA [HUWUX 2aNy35X NPOMUCTIOBOCMI — Ye YUNIHOPUYHL
000/10HKU, WO GIOPIZHAIOMbCA MAMEPIANOM, CNIBGIOHOUWEHHAM MOBWUHY CINIHKU 00 Oiamempy, KOHCMPYKYIEIO
Koncmpykyii ma npusnauennsam. Ocecumempuuni MOHKOCMIHHI 000NOHKU 00OepmaHHs — yYe YacmuHu

KOHCMPYKYIL, WO XapaKxmepusyiomvCs 6UCOKOIO0 HECyuol0 30amHICMIO | 6UKOPUCIOBYIOMbCS 6 PIZHUX 2ALY3AX
mexHixu. Tonkocminui YyunriHOpuyHi MpyoKU, OKPiM BUKOPUCMAHHS De3n0CepeOHbo K eleMeHmie KOHCMPYKYill,
CMAHOBIAMY HAYKOBO-NPAKMUYHUL [HMepec O MOOeN08aHHA NOBEOIHKU eleMeHmi6 KOHCMPYKYIN [HUUX
2e0MeMpUUHUX POPM 8 YMOBAX CKAAOHO20 HANPYIHCEHO020 cMmawny. B pobomi 3anponoHo6ano memoouxy
NPOCHO3Y6AHHA NOBEOIHKU MOHKOCMIHHUX YUNIHOPUYHUX MPYOUACmuX 3pasKie Memanesux [30mponHux
mamepiani, HABAHMAINCCHUX GHYMPIWHIM MUCKOM MA OCbOBUM POZMASYIOUUM 3VCULTAM. JloChiodcents
nPOBeOeHO 6 PaMKAX Oe3MOMEHMHOT Meopii Ons OLNANKY BENUKUX 3anUK08UxX Oeghopmayii. Mamepian easxicasca
isomponnum ma Hecmucaueum. Ilpysxcnumu depopmayiamu Oyno 3uexmysauo. Ipuiinamo euxonauus cinomes
Kipxeopa-JIaea meopii monxocminnux 00010HOK. AHANIMUYHO OMPUMAHO YMOBU EPAHUYHOI pieHO8a2U
nAACMU4H020 Oepopmysanns. [na 6usedeHHss SpanuiHux CRIi6GIOHOWIEHb MIdIC 3ANUUKOSUMU BIOHOCHUMU
Oepopmayiamu ma iCmuHHUMYU HANPYHCEHHAMU 8uKOpucmaro ymosu Jfopna-Haoai novamky npoyecy nroxanizayii
degpopmayii. IIpociioko8ano 6niue Uy HANPYICEHO20 CMAHY Ma NOKAZHUKIE 2e0Mempii MOHKOCMIHHOT mpyOKu
HA BEUYUHY SDAHUYHUX ICMUHHUX HANPYICEHb MA 3ATUMKO8UX deopmayill. AHaniz ompumanux ymos nokazae
SMEHWEHHS PecypCy MIYHOCMI Mamepiany npu HAOIUNCEHHT 3HAYEeHb CRIBGIOHOUEHb 20J08HUX HANPYICEHL 00
0,5 ma 2. Ananimuuno 006€0eHO, WO NpuU 3MEHUIeHHI GNAUSY PO3MAZYIOU020 3YCUNIA MA HAOIUICEHH]
HAanpysiceHo20 CMaHy 00 udy «BHYMPIWHIL MUCK» pecypc MIyHOCMI MOHKOCMIHHOL YUmiHOPpUUHOI mpyoxu
CMPIMKO chaoae. 3anponoHoéana y cmammi Memoouxka NpocHO3Y8AHHA KPUMUUHUX 3HAYEHb HANPYIICEHL Y
CMIHKAX MOHKOCWMIHHUX YULIHOPIE YOOCKOHANIOE MEeOpemudHull ma I[HJCeHepHull anapam Ol OYiHKU mda
3anobieants Hebe3neuHUx CIMaHie y KOHCMPYKYIAX Muny Konm.ise, peakmopie ma mpy6onpogoois.

Knruosi cnosa: senuxi oegpopmayii, ymoeu MiyHOCmi, MOHKOCMIHHI YUTITHOPU, CKAAOHULL HANPYIHCEHU
cma.
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