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Summary. Within the plastic non-isothermal yielding theory the elastic-plastic thermal stresses has been
investigated in a connective unit formed by means of thermal coupling shrinkage on tubes to be connected. The
mathematical model for description of the thermomechanical processes has been proposed. The applicable
mechanics problem has been formulated. The approximate approach for its solving based on the finite element
method has been realized. The optimization of the coupling profile with variable thickness in axial direction has
been fulfilled. A search of the optimal coupling variant has been executed for profiles restricted by piece-wise
linear surfaces. The optimization criterion by minimization of inequality of normal contact pressure p,

distribution has been proposed.
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Problem statement. In the manufacture of engineering structures, the problem of pipe
connection often arises. There are various technological methods for solving this problem,
namely, connecting the pipes by welding [1, 2], thread cutting [3] or imposition the coupling
and fitting it by preheating the connecting coupling and then thermally shrinkage it during
cooling of the connective unit, etc. The latter method of connection is technologically simple,
easily realizable, but requires high accuracy of connective unit manufacturing and preliminary
strength calculations. Connecting couplings are often used when other methods are difficult to
use, particularly in out-of-the-way places. Connections by couplings shall meet the conditions
of tightness, reliability and stresses in the connecting area shall not cause damage.

The technical implementation of pipe connection by means of preheated couplings and
their subsequent cooling is as follows. At ambient temperature T,, the inner radius of the
cylindrical sleeve is less than the outer radius of the pipes to be connected by a magnitude 4
called tension. When the coupling is heated to a certain temperature T , the hole in the coupling

increases and coupling can be freely imposed on the pipes to be connected. Subsequent cooling
of connective unit to ambient temperature T, is accompanied by thermal shrinkage of preheated

coupling and setting of pipes. Tight contact between pipes and coupling is provided.
Such a connecting method is technologically not complex. However, the reliability of
such a connection depends on the heating temperature T of the coupling, the geometric

parameters of the connective unit, the cooling conditions, the thermomechanical properties of
the materials from which the pipes and coupling are made. During thermal shrinkage of the
coupling, stresses may occur that are dangerous to strength and reliability, including under the
following operating conditions. At a sufficiently high stress level, plastic deformation of
materials can occur. Therefore, predicting the thermomechanical behavior of such a coupling
connection is an important theoretical and practical task focused on designing reliable in-service
technical units. Searching for optimal coupling geometry is subordinated to this task.
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Analysis of known research results. There are a number of theoretical [4 — 9] and
experimental [10] works concerning estimation the resulting stress state in coupling
connections under simulated operating conditions. Significantly less works related to
optimization of coupling shapes in such connections [11] (optimization of chain couplings). At
that stress state in connections is analyzed by means of couplings of constant thickness [2, 5].

New in this work are the follows: a) simulations within the thermoplasticity theory
behavior of pipe connection by means of a preheated coupling bounded by a piece-linear
boundary; b) optimization of coupling shape by varying parameters of piecewise-linear
boundary; c) use of one of many versions of plasticity theories, which takes into account a
number of important physically observed phenomena, it is to the tasks of stress and strain state
(SSS) of coupling joints and optimization of their forms; d) theoretical and calculated approach
to simulation of mechanical states of connection taking into account thermal sensitivity and
nonlinear hardening of material. Taken together, aspects a), b), ¢), d), as well as aspects a), b),
c) each particular are not considered in available literary sources.

The calculation of thermomechanical fields by analytical approaches is accompanied by
significant mathematical difficulties or practically impossible due to the complexity of
thermomechanical effects, the use of various materials in the joint, the possibility of their plastic
deformation and other factors. The finite element method (FEM) is a powerful computational
tool for solving a wide class of mechanics and mathematical physics problems. The application
of this method to the evaluation of the resulting stress state in coupling joints enables to obtain
solutions of specific problems without restrictions on the geometric configuration of the
investigated domain, boundary conditions, nature of non-homogeneity of materials, for
elastically and plastically deformable elements of the connective unit. There are no analytical
methods of calculation based on mechanics tasks for coupling connections among a significant
amount of processed literature. In the above-mentioned theoretical works [1 -6, 11], FEM is a
method of examining coupling connections implemented by various technological ways.

This work proposes the criterion of optimization of the coupling shape, which in the
preheated state is superimposed on the connected pipes. Optimal version of coupling bounded
by axisymmetric piece-linear surfaces at certain restrictions on their geometric parameters is
established.

Work purpose. The most commonly used are couplings of the simplest shape, that is,
constant thickness throughout the length. However, with axially variable-thickness couplings,
there is a different stress state from that of the simplest couplings.

The aim of this work is to develop a theoretical approach to the evaluation of mechanical
states in coupling joints under conditions of stationary thermal processes taking into account
the possibility of plastic strains and piece non-homogeneity of the connective unit. Based on
this approach, propose an optimal coupling shape in which the radial stresses drop along the
contacting surfaces, i.e., the contact pressure drop, is minimal. Optimization shall be carried
out under certain technologically expedient restrictions on the geometric parameters of the
coupling.

Formulation of mathematical problem about stress and strain state. Solving of
optimization problem on design of rational shape of coupling is based on previous theoretical
estimates of arising stressed state in coupling joints of different geometrical configuration.
Within the bounds of the proposed approach to stress and strain state (SSS) prediction, the
problem of non-isothermal elastic-plastic yielding theory with isotropic-kinematic hardening
[12, 13] is formulated and the method of its solution based on FEM calculation schemes is used.

It is taken into account that there are the such technological conditions under which it
can be assumed that the temperature of the tubes is constant and equal to the ambient
temperature T, during cooling the coupling, and that the cooling of the coupling is close to

uniform temperature change throughout the domain occupied by the coupling (heat exchange
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between the tubes and the coupling is neglected). This assumption is based on the practical use
of sufficiently thin elements in the connective unit. It is supposed also; that there is ideal
mechanical contact on the contacting surfaces of the pipes and sleeve, and the resulting
mechanical interaction can cause a plastic flow of materials. Rationally designed, the unit shall
provide as close as possible to the uniform distribution of the contact pressure p, at the given
restrictions on the geometric parameters of the coupling.

The processes under consideration assume quasi-static and geometrically linear.
Thermomechanical states are studied in the initial domain @, = Q,, U 2 o, occupied by the

coupling and the pipes to be connected in the initially unstressed and strainless state. The
domain €2, is related to a Cartesian coordinate system and is bounded by a surface 7. Here

£, is the domain occupied by the coupling in the heated to temperature T state; 2, is the

domain occupied by the pipes at the beginning of the coupling superimposition. An ideal
thermal contact between the sleeve and the pipes to be connected is assumed. During
deformation, severing between connected pipes and coupling and their slip is excluded.

The task of elastic-plastic SSS of the considered unit fixed on the part 73, < 7 and
free from external mechanical effects is formulated. This task includes equation of equilibrium

[14], geometric linear relation [14] and state equation of applied version of plastic yielding
theory [12]
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with corresponding boundary conditions on part 7y, </ and on part 7, </
(Foo Uloy =14, Toe NIy, =D).

State equation (1) describes the behavior of plastically deformable heat-sensitive
materials hardened during deforming. In relation (1) stress increment {do} functionally
depends on complete {s}, temperature {gT } plastic strains {g p} respectively; from increments
of strains {de}, {dgT }; increment of temperature dT ; matrix [D] of elastic constant material
and matrix [dD] of elastic constant increments due to temperature change; from shear modulus

of elasticity G ; current value H of the tangent of slope angle of the curve «stress intensity
o; — strain intensity ¢ » material deforming; from the stress intensity o related to the center

of the yield surface; from deviatory stresses {5} related to the center of the yield surface; from
intensity &; of Cauchy stresses [12]. In the vector representations of the respective tensorial
values for strains, the components of the tensor are placed similarly to the vector
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!
le}= {511, €9, £33, 2619, 2613, 26 23} . In vector representations for stresses components of a

’
tensor are placed similar to placement in a vector {o}= {011, O, 033,012,013, 023} , Where

the «'» symbol means transposing operation. Upper indices t and t+dt refer to values at
moments of deformation t and t+dt respectively. The upper indexes (k) indicate the step
number when tracking the deformation process in the FEM calculating schemes.

Formulated task that is based on the state equation (1) is a task concerning unknown
displacements {u}, strains {s } and stresses {}. Solution of this plasticity problem in contrast
to those of elasticity theory inaccurately describes the behavior of plastically deformable solids,
because the equation of the state of this theory and other known plasticity theories are not
accurate with respect to the plastic deformation criterion. This means that the stress intensity
o; and strain intensity ¢; obtained by solving the formulated problem do not correspond to the

experimental material deforming curve «o; — &;» functionally described by the plastic

deformation criterion. Therefore, the solution of this problem should be corrected with the
condition of plasticity.
In this work the criterion of plastic deformation is condition [15]

’

z{s}t S =oy+ 8 cle”)" (0<p*<1)
(' =lo) -.11,0,0,0) &b o' = ;{1,1,1,0,0,0} o,

which recorded in a single expression based on the modified Mises criterion proposed by [12].
Here o is yield limit of material; 8 *, c, m are parameters of material hardening.

Technique of the solution of tasks. The solution of the formulated problem about SSS
is based on the use of FEM. Appropriate software has been developed for solving a wide class
of two-dimensional problems of elasticity and elastoplasticity for piecewise homogeneous heat-
sensitive solids [16]. The solids in general case of non-canonical form are hardenable during
deformation. Such computational aspects as step-by-step approximation of the problem,
linearization of the equation of state (1) by the method of variable parameters of elasticity or
by the method of additional loads, organization of linearized iterative process, formation and
solution of constitutive FEM equations, etc., are also in the work [16]. Mathematical formalism
of designing a linearizing iterative process for a physically nonlinear problem, based on the
particular case of theory [12, 13] and respectively on the particular case of state equation (1)
presented by the author in [17].

The following is the search for the optimal coupling shape according to the mentioned
below criterion with the specified permissible changes in geometric parameters of coupling.
The SSS is examined for a certain specific domain that includes calculated domains for the
pipes to be connected and for the coupling of a certain configuration specified by geometric
parameters. Developed software [16] oriented on determination of mechanical state parameters
in integration points of finite elements. Therefore, SSS, including radial stresses, are analyzed
near the contacting surface. The following SSS calculations are performed for other geometric

coupling shapes, which vary in the domain 2 of specific permissible changes. At the same
time approximate determination of contact pressure p, consists in finding of radial component

o, of stress vector near boundary of contact of pipes and coupling preheated to temperature
Tc . Based on the comparison of the calculated results, the optimal coupling shape is determined
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according to the optimization criterion mentioned below. For optimal shape of coupling,
minimum difference in axial direction of radial stresses obtained near separating boundary of
outer surface of pipes and inner surface of coupling is realized.

Coupling connection: geometric configuration of connection, specification of
mathematical problem about SSS. Fig. 1 shows the connective unit to be designed. Before
beginning of coupling cooling, each pipe has inner radius R and wall thickness h, . Heated

coupling has length 2d, and inner radius R,. When calculating the stress state, it is also
assumed that the length 2d, of the coupling is much smaller than the length 2d of the pipes to
be connected. For the connector shape in question determination of stress state and contact

a. -:—a‘-z—:--:—ﬂ‘zﬁ-l‘ o
L

Figure 1. Schematic representation of the axial section of the connective unit

pressure p, was carried out by solving the axisymmetric problem of non-isothermal
elastoplasticity in a cylindrical coordinate system (r, &, z). The origin of the coordinate system
(r,6,2) is at the center of the axial section of the connector, that is, at the pipe docking plane.
In axial symmetry with respect to 0z, the distribution of temperature, stresses and strains is
independent of angle & and symmetrical with respect to z = 0. Therefore, a two-dimensional
domain occupied by a fourth part of the axial section of the connector unit was investigated
Fig. 2).

(e )Stress and strain state analysis in the domain 2, is performed at temperature load with
initial condition

Te, (r,0,2)e 24

T(r,0,z,t = ,
( )t=0 {TA1 (r0,2)e 24

)

where Q,,, Q,, are the domains occupied by the fourth part of the axial sections of the

coupling and the pipes to be connected, respectively. For the above assumptions about uniform
change of coupling temperature and constant temperature of connected pipes, the temperature
field at each moment of cooling time at t > 0 is characterized by temperature distribution
T,<T =const <T., (r,0,2)e
T(r,9,z,t)={ A c: (n0.2)e 2

Ta, (r,0,2)e 2, ®)
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For simplicity, it is assumed that in the initial undeformed state of the coupling unit, the
outer radius R+ h, of the pipes to be connected and the inner radius R, of the coupling

Iy
I\
A

Figure 2. Schematic representation of the calculated two-dimensional domain 2,
and its finite element discretization

arethe same as: R, = R + h, . If the inner radius of the preheated sleeve is greater than the outer

radius of the pipes to be connected, then when the sleeve is cooled, there will be no mechanical
pressure on the pipes to be connected until the sleeve is without thermally shrinkage, at which
these radii will coincide. Further solving of the problem will not differ from solving of the
problem with coincident radii of the composed system, which is characterized by known
temperature of the coupling and temperature of the medium for pipes. Under this assumption
of radii coincidence we have (Fig. 1, 2):

2,=02xU02,
24, =1{r.0,2): R<r<R+h,, 6=const, 0<z<d},

.(.201:{(r,6',z):R+h2 <r<R+h, +h;, =const, zsdhz_i?’[r—(R+h2 +b)+d; U (4)
i

Uzsd3;dl[r—(R+h2)]+d1U0£zsd2, Osdzsd3sd1<<d}-

8-node isoparametric elements of serendipal family are used to sample the
domain 2, [18].
Temperature stresses are investigated and on this basis contact pressure p, is

determined in connecting unit, free from initial stresses and strains, from external mechanical
loads, with initial temperature distribution (2) and temperature distribution (3) at t > 0.
We specify the boundary conditions relative to the domain €2, under consideration. On

the line
Iy, =1{r,0,2):R<r<R+h,+h, &=const, z=0},

which is allocated in the pipe docking plane, the kinematic boundary condition
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u,

Toy =0 (5)

is given. This condition means that the central cross section does not shift in the direction of
the axis 0z during deformation and also set for symmetry reasons. On the rest of the bounding
lines 77, boundary condition [14]

[] {o} r,, =0 (6)
means that there are no force loads. In formula (6), the matrix [n] is the matrix of guide cosines
of the outer normal {n} to the surface 77, . It is assumed that in the contact zone on the line S,

of the outer surface of the pipe and on the line S, of the inner surface of the coupling, the

components of the displacement vector in radial and axial directions should be equal to each

other:

1

2
r SOl_

1
r‘SOZ !

Z

2

u u so; = U7

u

502 1 (7)
where
So1 =1{(r.0,2):r=R,, O=const, 0<z<d,;}c 2y,

Index «1» in formula (7) refers to displacements in coupling, and index «2» refers to
displacements in pipes.

Formulated based on the equation of state (1), the mathematical problem with edge and
contact conditions (5) — (7) is the thermoelastoplasticity problem for the system of solids
occupying the domain €, (Fig. 2) given by expressions (4) under the temperature load (3)
known at each cooling time.

Criterion for choice the optimal coupling shape. Formalizing the search for the optimal
coupling profile will be carried out by choice the functional

I(r)=|max o,(r,8,z) — min o,(r,0,z)|, (8)
=R* =R
;:Const g:COHSt
0<z<d 0<z<d

which at r=R" =R+h, determines contact pressure p. difference. Optimality criterion
1*(r)="min I(r) 9)
(r,H,z)cQO*
means minimizing the stress drop o, (8) provided that the geometric parameters of the coupling

profile are selected from a given class of domains 2 . The task of finding conditions of equal

strength, that is, conditions of providing as uniform distribution of stresses as possible, is one
of the problems of resistance of materials. Minimum difference of contact stresses is
technologically expedient for more efficient operation of structures [19]. The ways of achieving
as uniform distribution of contact stresses as possible and obtaining of uniform -strength
coupling joints are described in the works [20, 21].

Results of a research. Numerical calculations are made for pipes with inner radius
R =17 mm and wall thickness h, =3 mm at length d =35 mm of considered pipe segment.
When searching for optimal shape of coupling profile according to specified criterion of
optimality (9) such dimensions as thickness of coupling h, =5 mmat z=0 and maximum
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size of coupling in direction of axis Oz d, =25 mm remain fixed. The search for the optimal
coupling profile was obtained by varying the dimensions d,, d;, b (0<d, <d;<d,,

0 <b < 2h,), which together with the constant dimensions h, and d, define the domain 2,

occupied by the coupling and bounded by the piece-linear boundary.

The SSS was calculated in coupling connections for different versions of the geometric
coupling profile with small changes of one of the dimensions d,, d;, b with a fixed value of
the other two dimensions, which in the calculation of the following variants were also subject
to change. As a result, about 60 tasks were solved to calculate SSS, which were direct in the
process of solving the optimization task, and the task of finding a variant with the maximum
value of functional (8). Then, radial stress o, differences in the connected pipes near the
contacting surface were analyzed. On the basis of this, the optimal version of the coupling and
the coupling with the maximum difference of approximate contact pressure p. was

established.
The restrictions €2, under which the functional (8) was minimized were therefore as
follows:
QS:leugoz, (10)
where
24, ={(r.0, 2)c 2y : h, =const, d; =const, 0<d, <d; <d;, 0<b<2h}. (11)

As an example, steel pipe connection by brass coupling is considered.
Thermomechanical characteristics of the materials used in the connection: for steel Young 's
module E =196 GPa, Poisson 's ratio v = 0,28, yield limit o, =422 MPa, linear coefficient

of thermal expansion a; =11-10"° K*; for brass E = 98 GPa, Poisson 's ratio v = 0,25, yield

limit &, =255 MPa, linear thermal expansion coefficient a; =16-10"° K-1. Due to the lack

of available reference data and the occurrence of plastic strains in the small, as the following
calculations show, temperature range, hardening of the material is not essential. Therefore, the
hardening effects are ignored, that is, steel and brass are assumed to deform as ideal elastic-
plastic materials.

Initial coupling temperature T, =220°C, ambient temperature T, =20°C. In the

present task, the temperature load, starting from the given value T. =220°C for the coupling,

changes with the corresponding increments during each deformation step, so that the final value
T, =20°C is taken at the end of the cooling process. Step-by-step temperature change when

cooling is chosen as following: 220°C — 170°C — 120°C — 70°C — 20°C. With the
temperature load step selected, the deformation history can be traced accurately enough.

A schematic representation of the sampled domain is shown in Fig. 2. The concrete
variant of finite element mesh, the number of finite elements and nodes depended on the
concrete configuration of the coupling profile.

On the basis of computational experiments, the expediency of using a specific geometric
grid and steps to trace the deformation process is established while maintaining the accuracy of
calculations. That is, with practical coincidence of results on smaller and larger geometric
meshes, on small and large steps of temperature load there is no need to count on smaller grids
and smaller steps. For some variants, the geometric mesh and temperature steps could be larger.
But since the calculated variants were many (about 60), the geometric mesh and temperature
step, which provide accuracy of calculations, were chosen as priorities, although there are
burdening for computations, i.e. smaller for some geometric profiles of the coupling.
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Since the stress state is determined in the integration points of the finite elements, the
value of the functional (8) was analyzed along the line

Iy ={(r.0,2):r=R+h, -5, =const, 0<z<d}, (12)

which passes in the domain 2, of pipes to be connected at a distance 6 from their external
surface through points of integration of finite elements (6 = 0,284 m). At that, value of normal
stresses o, along line (12) is sufficiently good approximation for stresses o, along butt line
of connected pipes and coupling (r = R-+h,), i.e. for contact pressure p,.

On the basis of calculations it is
obtained a coupling profile for which the
_________ value of functional (8) at r=R+h, —& and
restrictions  (10), (11) is maximum
(d, =10 mm, d;=22 mm, b=16 mm)
(Fig. 3): 1, =18119 MPa. Also distribution

- -4 of stresses for the simplest in form coupling,
! i.e. for a hollow cylinder of finite length and
constant  thickness  (d, =10  mm,

d;=25mm, b=5 mm) is calculated

(Fig. 4). In this case 1, =117,33 MPa. By
Figure 3. Stress o, distribution along the line 77’ solving of an optimizing task with an

\
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functional value (8) 1, =18119 MPa (11) it is proposed the best in form coupling
and representation of the corresponded
calculated discretized domain (d, =10 mm, d; =109 mm, b =25 mm)

for which difference of stresses o, in concordance with functional (8) along the line 77, set
by expression (12) is minimum with value 1; =74,26 MPa. In Fig. 35 it is given distributions

of stresses o, along the line 77,” and the profiles of connections corresponding to them with

the images of meshes for a coupling configuration with maximum value of functional (8), for
simplest and optimal versions of couplings. For the three cases we have considered

ly:1,:1;=244:158:1, where 1, 1,, 1, are the values of the functional (8) on the line 7~

at constraints (10), (11) for the coupling connections illustrated in Fig. 3, 4, 5 respectively. The
domains in Fig. 3, 4 are divided into 99 elements using 356 nodes. The domain in Fig. 5 is
sampled by 54 elements with 196 nodes. Plastic flow zones are observed for the coupling
connections versions shown in Fig. 3 and 5. For the profile of the coupling of constant thickness
(Fig. 4) deformation takes place according to the elastic law.
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Figure 4. Stress o, distribution along the line 77 Figure 5. Stress o, distribution along the line 77’
for the simplest variant of the coupling for the optimal variant of the coupling
with functional value (8) 1, =117,33 MPa with functional value (8) 1; = 74,26 MPa
and representation of the corresponded and representation of the corresponded
calculated discretized domain calculated discretized domain

In addition, based on the analysis of the calculated results presented in Fig. 3 — 5, the
following observed features in the distribution of contact stresses have been established. The
most uniform contact pressure is the pressure in the vicinity of the central cross-section z =0
and is not significantly different at z =0 for the presented joint variants. The contact pressure
drop p. is significant at the contact point of the end of the coupling and the pipes to be

connected, i.e. at z =d,. The maximum stresses o, in optimal variant are compressive (Fig. 5).
The significant reduction in the axial direction of contact pressure p, and the reduction of

stress o, level attained as a result of the optimization indicate that it is practical expediency to
solve optimization problems for coupling connections.

Conclusions. Proposed is approach to prediction of mechanical processes caused by
thermal shrinkage of couplings for connection of pipes, and criterion of optimization of
geometric parameters of coupling. This approach for quantitative assessment of mechanical
states is based on the theory of plastic non-isothermal yielding with isotropic-kinematic
hardening [12, 13] and calculation schemes of FEM. When optimizing the coupling shape
according to the above criterion (9) with restrictions (10), (11), for the geometric configuration
of the connection minimization of the undesirable contact pressure p, difference due to

technological considerations is realized. That is, the difference in axial direction of stresses o,
normal to the contacting surface is minimized. At the same time more uniform distribution of
contact pressure compared to other forms of coupling is achieved. There is a significant
predicted effect of designing an optimal coupling compared to a coupling variant in which the
contact pressure drop is maximum and compared to a constant thickness coupling variant. In
optimum, both compressive and tensile stresses o, are reduced (Fig. 5). In the optimal
embodiment (Fig. 5), the tensile stresses o, are minor and substantially lower than the stresses
o, for connection configuration with maximum difference of radial stresses (Fig. 3) and for
the constant thickness coupling (Fig. 4).
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A technique has been developed to solve mechanical problems for coupling connections

and corresponding optimization problems can be used for a wider class of tasks in this direction.
It is promising to minimize the difference in contact pressure p, when varying the preheating

temperature T, of the couplings, when selecting couplings restricted by non-linear

axisymmetric surfaces, made of other materials, couplings of different length and thickness.
Similar optimization problems can be considered for welded coupling connections with
acquired weld residual stresses. At the same time, taking into account the possibility of plastic
deformation is essential.
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V]IK 539.214

OIITUMIBALIA TEOMETPUYHUX TAPAMETPIB MY®TH
Y 3’€EAHYBAJIBHOMY BY3JII. MOAEJIb TA PO3PAXYHKHA

Bipa Muxaijimmu-s

Incmumym npukiaounux npooaiem mMexaniku i Mamemamuxu
imeni A. C. Iliocmpueaua HAH Ykpainu, Jlvsis, Yxpaina

Pe3tome. B pamkax meopii niacmuunoe0 Hei30mepMiuHO020 MeyiHHA 00CAIOHCEHO NPYHCHO-NAACTIUYHI
memnepamypHi HanpyJceHHsa 8 3 €COHYB8ANbLHOMY V3], YMBOPEHOMY 3a PAXYHOK MepMIuHOi ycaoku mygmu Ha
3’eonysani mpyou. 3anponoHo6aHo MamemMamuuHy MoOenb O NPOSHO3VEAHHA MEXAHIYHUX Npoyecis,
CHPUYUHEHUX MUCKOM OCMU2aio4oi my@mu. 3’ cOny8anvhuti Y301, e1eMeHmamu aKo2o € 06i mpyou Kpy208020
nepepizy ma my@ma, modice Oymu ymeopeHuil 3 GUKOPUCMAHHAM pizHux mamepianie. Chopmyibo6ano 6ionogiony
3a0a4y Mexauiku 3 8paxy8aHHAM MOMCIUBOCMI GUHUKHEHHS NAACTUYHO20 Oegopmysanns. Koukpemusosano
2PAHUYHI YMOBU OJisl PO32NIA0YBAH020 3 €0HYBANLHO20 8V3Na. Peanizosano nabdbaudicenutl nioxio 00 po3e a3yeanHs
3a0aui, AKull 0A3YEMbCA HA PO3PAXYHKOBUX CXeMAX Memoody CKiHueHHux enemenmis. [lna c@opmynvosanoi
@izuuno  HeniniuHoOl 3a0aui  esoMOYis MEXAHIYHUX CMAHIE CKAAOeHOI KYCKOBO-OOHOPIOHOT —cucmemu
NPOCHO3YEMbCSL NOKPOKOBO GIONOBIOHO 00 NOKPOK0GOT 3minu memnepamypu. Posensidaiomvcs mypmu sminHoi 6
0CbOBOMY HANPAMKY MOBWUHY, AKI 00MedceHi KYCKOGO-TIHIUHUMU — OCECUMEMPUUHUMU — NOBEPXHAMU.
3anpononosano Kpumepiti onmumizayii ceomMempuyHUX napamempis MmyQmu i3 3a0aHUMU OOMEI’CEHHAMU
cmocoero opmu ma posmipie npoginto mygmu. [[na wiykaHoco onmumaibHO20 6apiaHmy MIHIMIZYEMbCA
HepIGHOMIPHICIb PO3NOOINY 8 0CbOBOMY HANPAMKY KOHMAKMHO20 MUCKY P, Midc mpybamu ma mygmoio.
IIpoananizoeano pad po3paxyHKo8ux pe3yibmamie no GUSHAYEHHIO HANPYHCEHO-0epopMO8anoco cmauy O
PI3HUX 2e0MemPUYHUX KOHQpIeypayitl mMy@m 3MIiHHOI 8 0Cbo8OMY HanpsmKy mosuwjuru. Ompumano éapianm i3
HAUOINbW HEPIBHOMIPHUM PO3NOOIIOM MUCKY P, mMa onmumansHull eéapianm. 3poOneHo MexaniuHi 6UCHOGKU
CMOCOBHO Xapakmepy no8ediHKU KOHMAKMHO20 MUCKy. 30ilicCHeHO KilbKIiCHY OYIHKY egheKmy 8i0 NpoeKmyeamHs
My¢hm 3MIHHOT MOBWUHY WIAXOM NOPIGHSIHHA KOHMAKMHO20 MUCKY P, Ol ONMUMAIbHO20 6apianmy, O7is
Haunpocmiwoi my@mu — ROCMiUHOI moswuHu ma O RpoQino mypmu 3 MAKCUMATLHUM Nepenacom
KOHMAKMHO20 MUCKY.

Kniwouosi cnosa: mygma, meopis niaCmMuuHo20 HEI30MEPMIUHO20 MEYIHHA, MemOO CKIHYEHHUX
e/leMenmie, HanpyJICeHHs, ONMUMI3ayis.
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