logo logo


Establishing the causes of premature damage of steam turbine rotor blades of TPP

НазваEstablishing the causes of premature damage of steam turbine rotor blades of TPP
Назва англійськоюEstablishing the causes of premature damage of steam turbine rotor blades of TPP
АвториPetro Solovei, Oleksandra Student, Lesia Svirska, Ivan Kurnat, Sofiia Krechkovska, Taras Gural
ПринадлежністьKarpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, Lviv, Ukraine Lviv Polytechnic National University, Lviv, Ukraine
Бібліографічний описEstablishing the causes of premature damage of steam turbine rotor blades of TPP / Petro Solovei, Oleksandra Student, Lesia Svirska, Ivan Kurnat, Sofiia Krechkovska, Taras Gural // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 110. — No 2. — P. 46–56.
Bibliographic description:Solovei P., Student O., Svirska L., Kurnat I., Krechkovska S., Gural T. (2023) Establishing the causes of premature damage of steam turbine rotor blades of TPP. Scientific Journal of TNTU (Tern.), vol 110, no 2, pp. 46–56.
УДК

620.1:62-226.2

Ключові слова

15Kh11MF steel, steam turbine blade, strength, plasticity, impact toughness, structure.

The technical condition of the metal of the steam turbine blade was analyzed and the reasons for its fracture were established. It was shown that the relative elongation δ of the blade metal varied from 7.4 to 11.5%, and was lower than the regulated level. The low values of δ and the obtained values of the ratio between yield strength and ultimate tensile strength σYS / σUTS, which varied from 0.8 to 0.89, indicate a low margin of plasticity of the blade metal, which contributed to its cracking under the action of working loads. Metallographic analysis revealed pores in the surface-hardened layer of the blade. They caused low adhesion of the layer with the base metal of the blade, and also of crack initiation. The high stress concentration and the contact of the blade metal with the working medium contributed to the growth of a subcritical corrosion-fatigue crack in the cross-section up to its complete destruction.

ISSN:2522-4433
Перелік літератури
  1. Babii L. O., Student O. Z., Zagórski A. Markov A. D. Creep of degraded 2.25Cr-Mo steel in hydrogen. Materials Science. 2007. 46 (5). P. 701–707. URL: https://doi.org/10.1007/s11003-008-9013-2.
  2. Marushchak P. O., Bishchak R. T., Gliha B, Sorochak A. P. Influence of temperature on the impact toughness and dynamic crack resistance of 25Kh1M1F steel. Materials Science 2011. 46 (4). Р. 568–572. URL: https://doi.org/10.1007/s11003-011-9325-5.
  3. Kurek M., Lagoda T., Walat K. Variations of Selected Cyclic Properties Depending on Testing Temperature. Materials Science. 2015. Vol. 50. P. 555–563. URL: https://doi.org/10.1007/s11003-015-9753-8.
  4. Student O. Z., Matysiak H., Zagórski A., Babiy L. O., Kurzydlowski K. J. Creep rupture strength in hydrogen of Cr-Mo-V steel. Inżynieria powierzchni. 2005. 1 (2A). P. 175–179.
  5. Zagórski A., Student O., Babij L., Nykyforchyn H., Kurzydłowski K. J. Peculiarities of hydrogen effect on the creep process in the Cr-Ni-Mo steel. Advances in Materials Science. 2007. Vol. 7, No. 1 (11). P. 211–218.
  6. Dzioba I. R. Properties of 13KhMF steel after operation and degradation under the laboratory conditions. Materials Science. 2010. 46 (5). P. 357–354. URL: https://doi.org/10.1007/s11003-010-9297-x.
  7. Student O. Z., Krechkovska H. V., Svirska L. М. Kindratskyi B. І., Shyrokov V. V. Ranking of the mechanical characteristics of steels of steam pipelines of thermal power plants by their sensitivity to in-service degradation. Materials Science. 2021. 57 (3). P. 404–412. URL: https://doi.org/10.1007/s11003-021-00554-x
  8. Marushchak P. O., Bishchak R. T., Gliha B., Sorochak A. P. Influence of temperature on the impact toughness and dynamic crack resistance of 25Kh1M1F steel. Materials Science. 2007. 46 (5). P. 568–552. URL: https://doi.org/10.1007/s11003-011-9325-5.
  9. Romaniv O. M., Nykyforchyn H. M., Dzyuba I. R., Student O. Z., Lonyuk B. P. Effect of damage in service of 12Kh1MF steam-pipe steel on its crack resistance characteristics. Materials Science. 1998.
    34 (1), P. 110–114. URL: https://doi.org/10.1007/BF02362619.
  10. Krechkovs’ka H. V., Student O. Z. Determination of the degree of degradation of steels of steam pipelines according to their impact toughness on specimens with different geometries of notches. Materials Science. 2017. 52 (4). P. 566–571. URL: https://doi.org/10.1007/s11003-017-9991-z.
  11. Miao X., Hong H., Hong X., Peng J., Bie F. Effect of Constraint and Crack Contact Closure on Fatigue Crack Mechanical Behavior of Specimen under Negative Loading Ratio by Finite Element Method. Metals – Open Access Metallurgy Journal. 2022. 12 (11). 1858. Doi: 10.3390/met12111858.
  12. Azeez A., Norman V., Eriksson R., Leidermark D., Moverare J. Out-of-phase thermomechanical fatigue crack propagation in a steam turbine steel – Modelling of crack closure. International Journal of Fatigue. 2021. Vol. 149. 106251. URL: 10.1016/j.ijfatigue.2021.106251.
  13. Azeez A., Eriksson R., Leidermark D., Calmunger M. Low cycle fatigue life modelling using finite element strain range partitioning for a steam turbine rotor steel. Theoretical and Applied Fracture Mechanics. 2020. Vol. 107. 102510. Doi: 10.1016/j.tafmec.2020.102510.
  14. Maruschak P., Vorobel R., Student O., Ivasenko I., Krechkovska H., Berehulyak O., Mandziy T., Svirska L., Prentkovskis O. Estimation of fatigue crack growth rate in heat-resistant steel by processing of digital images of fracture surfaces. Metals. 2021. 11. 1776. URL: https://doi.org/10.3390/ met11111776.
  15. Nykyforchyn H. M., Tkachuk Yu. M., Student O. Z. In-service degradation of 20Kh13 steel for blades of steam turbines of thermal power plants. Materials Science. 2011. 47 (4). P. 447–456. URL: https://doi.org/ 10.1007/s11003-012-9415-z.
  16. Ostash O. P., Panasyuk V. V., Andreiko I. M., Chepil R. V., Kulyk V. V., Vira V. V. Methods for the construction of the diagrams of fatigue crack-growth rate of materials. Materials Science. 2007. 43 (4). P. 479–491. URL: https://doi.org/10.1007/s11003-007-0056-6.
  17. Rhode M., Nietzke J., Richter T., Mente T., Mayr P., Nitsche A. Hydrogen effect on mechanical properties and cracking of creep-resistant 9% Cr P92 steel and P91 weld metal. Welding in the World. 2023. 67. P. 183–194. URL: https://doi.org/10.1007/s40194-022-01410-5.
  18. Toribio J., Vergara D. Lorenzo M. Role of in-service stress and strain fields on the hydrogen embrittlement of the pressure vessel constituent materials in a pressurized water reactor. Engineering Failure Analysis.2017. 82, P. 458–465. Doi: 10.1016/j.engfailanal.2017.08.004.
  19. Ostash O. P., Vytvyts’kyi V. I. Duality of the action of hydrogen on the mechanical behavior of steels and structural optimization of their hydrogen resistance. Materials Science. 2012. 47 (4). P. 421–737. Doi: 10.1007/s11003-012-9413-1.
  20. Sergeev N. N., Sergeev A. N., Kutepov S. N., Kolmakov A. G., Gvozdev A. E. Mechanism of the Hydrogen Cracking of Metals and Alloys, Part I (Review). Inorganic Materials: Applied Research. 2019. 10 (1). P. 24–31. Doi: 10.1134/S207511331901026X.
  21. Song Y., Chai M., Han Z., Liu P. High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal. Materials. 2022. 15 (1). 109. URL: https://doi.org/10.3390/ma15010109.
  22. Yasniy O., Pyndus Y., Iasnii V., Lapusta Y. Residual lifetime assessment of thermal power plant superheater header. Engineering Failure Analysis. 2017. 82. P. 390–403. Doi: 10.1016/j.engfailanal.2017.07.
  23. Duriagina Z.  A., Kulyk V.  V., Filimonov O.  S., Trostianchyn A.  M., Sokulska N.  B. The Role of Stress-Strain State of Gas Turbine Engine Metal Parts in Predicting Their Safe Life, Progress in Physics of Metals. 2021. 22 (4). P. 643–677. URL: https://doi.org/10.15407/ufm.22.04.643.
  24. Smiyan О. D., Student О. Z. Fractographic signs of gigacycle fatigue and hydrogenation of heat-resistant steels after long-term operation. Material Science. 2021. 56 (6). P. 727–738. URL: https://doi.org/10.1007/ s11003-021-00489-3.
  25. Krechkovs’ka H. V., Student O. Z., Nykyforchyn H. M. Diagnostics of the engineering state of steam pipelines of thermal power plants by the hardness and crack resistance of steel. Materials Science. 2019. 54 (5). P. 627–637. URL: https://doi.org/10.1007/s11003-019-00227-w.
  26. DSTU ISO 6892-1:2019 Metalevi materialy. Vyprobuvannia na roztiah. Chastyna 1. Metod vyprobuvannia za kimnatnoi temperatury (ISO 6892-1:2016, IDT).
  27. DSTU ISO 148-1:2022 Metalevi materialy. Vyprobuvannia na udarnyi vyhyn za Sharpi na maiatnykovomu kopri. Chastyna 1. Metod vyprobuvannia (ISO 148-1:2016, IDT).
  28. Krechkovska H., Hredil M., Student O., Svirska L., Krechkovska S., Tsybailo I., Solovei P. Peculiarities of fatigue fracture of high-alloyed heat-resistant steel after its operation in steam turbine rotor blades. International Journal of Fatigue. Vol. 167. Part B. 2023. 107341. URL: https://doi.org/10.1016/j.ijfatigue.2022.107341.
  29. Krechkovska H., Hredil M., Student O. Book chapter 28: Fatigue crack growth resistance of heat-resistant steel 15H11МF after operation in blades of a steam turbine. Fatigue and Fracture of Materials and Structures / Eds. G. Lesiuk, S. Duda, J. A. F. O. Corea, A. M. P. De Jesus, Structural Integrity 24. Springer Nature Switzerland AG, 2022. P. 245‑251. URL: https://doi.org/10.1007/978-3-030-97822-8.
References:
  1. Babii L. O., Student O. Z., Zagórski A. Markov A. D. Creep of degraded 2.25Cr-Mo steel in hydrogen. Materials Science. 2007. 46 (5). P. 701–707. URL: https://doi.org/10.1007/s11003-008-9013-2.
  2. Marushchak P. O., Bishchak R. T., Gliha B, Sorochak A. P. Influence of temperature on the impact toughness and dynamic crack resistance of 25Kh1M1F steel. Materials Science 2011. 46 (4). Р. 568–572. URL: https://doi.org/10.1007/s11003-011-9325-5.
  3. Kurek M., Lagoda T., Walat K. Variations of Selected Cyclic Properties Depending on Testing Temperature. Materials Science. 2015. Vol. 50. P. 555–563. URL: https://doi.org/10.1007/s11003-015-9753-8.
  4. Student O. Z., Matysiak H., Zagórski A., Babiy L. O., Kurzydlowski K. J. Creep rupture strength in hydrogen of Cr-Mo-V steel. Inżynieria powierzchni. 2005. 1 (2A). P. 175–179.
  5. Zagórski A., Student O., Babij L., Nykyforchyn H., Kurzydłowski K. J. Peculiarities of hydrogen effect on the creep process in the Cr-Ni-Mo steel. Advances in Materials Science. 2007. Vol. 7, No. 1 (11). P. 211–218.
  6. Dzioba I. R. Properties of 13KhMF steel after operation and degradation under the laboratory conditions. Materials Science. 2010. 46 (5). P. 357–354. URL: https://doi.org/10.1007/s11003-010-9297-x.
  7. Student O. Z., Krechkovska H. V., Svirska L. М. Kindratskyi B. І., Shyrokov V. V. Ranking of the mechanical characteristics of steels of steam pipelines of thermal power plants by their sensitivity to in-service degradation. Materials Science. 2021. 57 (3). P. 404–412. URL: https://doi.org/10.1007/s11003-021-00554-x
  8. Marushchak P. O., Bishchak R. T., Gliha B., Sorochak A. P. Influence of temperature on the impact toughness and dynamic crack resistance of 25Kh1M1F steel. Materials Science. 2007. 46 (5). P. 568–552. URL: https://doi.org/10.1007/s11003-011-9325-5.
  9. Romaniv O. M., Nykyforchyn H. M., Dzyuba I. R., Student O. Z., Lonyuk B. P. Effect of damage in service of 12Kh1MF steam-pipe steel on its crack resistance characteristics. Materials Science. 1998.
    34 (1), P. 110–114. URL: https://doi.org/10.1007/BF02362619.
  10. Krechkovs’ka H. V., Student O. Z. Determination of the degree of degradation of steels of steam pipelines according to their impact toughness on specimens with different geometries of notches. Materials Science. 2017. 52 (4). P. 566–571. URL: https://doi.org/10.1007/s11003-017-9991-z.
  11. Miao X., Hong H., Hong X., Peng J., Bie F. Effect of Constraint and Crack Contact Closure on Fatigue Crack Mechanical Behavior of Specimen under Negative Loading Ratio by Finite Element Method. Metals – Open Access Metallurgy Journal. 2022. 12 (11). 1858. Doi: 10.3390/met12111858.
  12. Azeez A., Norman V., Eriksson R., Leidermark D., Moverare J. Out-of-phase thermomechanical fatigue crack propagation in a steam turbine steel – Modelling of crack closure. International Journal of Fatigue. 2021. Vol. 149. 106251. URL: 10.1016/j.ijfatigue.2021.106251.
  13. Azeez A., Eriksson R., Leidermark D., Calmunger M. Low cycle fatigue life modelling using finite element strain range partitioning for a steam turbine rotor steel. Theoretical and Applied Fracture Mechanics. 2020. Vol. 107. 102510. Doi: 10.1016/j.tafmec.2020.102510.
  14. Maruschak P., Vorobel R., Student O., Ivasenko I., Krechkovska H., Berehulyak O., Mandziy T., Svirska L., Prentkovskis O. Estimation of fatigue crack growth rate in heat-resistant steel by processing of digital images of fracture surfaces. Metals. 2021. 11. 1776. URL: https://doi.org/10.3390/ met11111776.
  15. Nykyforchyn H. M., Tkachuk Yu. M., Student O. Z. In-service degradation of 20Kh13 steel for blades of steam turbines of thermal power plants. Materials Science. 2011. 47 (4). P. 447–456. URL: https://doi.org/ 10.1007/s11003-012-9415-z.
  16. Ostash O. P., Panasyuk V. V., Andreiko I. M., Chepil R. V., Kulyk V. V., Vira V. V. Methods for the construction of the diagrams of fatigue crack-growth rate of materials. Materials Science. 2007. 43 (4). P. 479–491. URL: https://doi.org/10.1007/s11003-007-0056-6.
  17. Rhode M., Nietzke J., Richter T., Mente T., Mayr P., Nitsche A. Hydrogen effect on mechanical properties and cracking of creep-resistant 9% Cr P92 steel and P91 weld metal. Welding in the World. 2023. 67. P. 183–194. URL: https://doi.org/10.1007/s40194-022-01410-5.
  18. Toribio J., Vergara D. Lorenzo M. Role of in-service stress and strain fields on the hydrogen embrittlement of the pressure vessel constituent materials in a pressurized water reactor. Engineering Failure Analysis.2017. 82, P. 458–465. Doi: 10.1016/j.engfailanal.2017.08.004.
  19. Ostash O. P., Vytvyts’kyi V. I. Duality of the action of hydrogen on the mechanical behavior of steels and structural optimization of their hydrogen resistance. Materials Science. 2012. 47 (4). P. 421–737. Doi: 10.1007/s11003-012-9413-1.
  20. Sergeev N. N., Sergeev A. N., Kutepov S. N., Kolmakov A. G., Gvozdev A. E. Mechanism of the Hydrogen Cracking of Metals and Alloys, Part I (Review). Inorganic Materials: Applied Research. 2019. 10 (1). P. 24–31. Doi: 10.1134/S207511331901026X.
  21. Song Y., Chai M., Han Z., Liu P. High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal. Materials. 2022. 15 (1). 109. URL: https://doi.org/10.3390/ma15010109.
  22. Yasniy O., Pyndus Y., Iasnii V., Lapusta Y. Residual lifetime assessment of thermal power plant superheater header. Engineering Failure Analysis. 2017. 82. P. 390–403. Doi: 10.1016/j.engfailanal.2017.07.
  23. Duriagina Z.  A., Kulyk V.  V., Filimonov O.  S., Trostianchyn A.  M., Sokulska N.  B. The Role of Stress-Strain State of Gas Turbine Engine Metal Parts in Predicting Their Safe Life, Progress in Physics of Metals. 2021. 22 (4). P. 643–677. URL: https://doi.org/10.15407/ufm.22.04.643.
  24. Smiyan О. D., Student О. Z. Fractographic signs of gigacycle fatigue and hydrogenation of heat-resistant steels after long-term operation. Material Science. 2021. 56 (6). P. 727–738. URL: https://doi.org/10.1007/ s11003-021-00489-3.
  25. Krechkovs’ka H. V., Student O. Z., Nykyforchyn H. M. Diagnostics of the engineering state of steam pipelines of thermal power plants by the hardness and crack resistance of steel. Materials Science. 2019. 54 (5). P. 627–637. URL: https://doi.org/10.1007/s11003-019-00227-w.
  26. DSTU ISO 6892-1:2019 Metalevi materialy. Vyprobuvannia na roztiah. Chastyna 1. Metod vyprobuvannia za kimnatnoi temperatury (ISO 6892-1:2016, IDT).
  27. DSTU ISO 148-1:2022 Metalevi materialy. Vyprobuvannia na udarnyi vyhyn za Sharpi na maiatnykovomu kopri. Chastyna 1. Metod vyprobuvannia (ISO 148-1:2016, IDT).
  28. Krechkovska H., Hredil M., Student O., Svirska L., Krechkovska S., Tsybailo I., Solovei P. Peculiarities of fatigue fracture of high-alloyed heat-resistant steel after its operation in steam turbine rotor blades. International Journal of Fatigue. Vol. 167. Part B. 2023. 107341. URL: https://doi.org/10.1016/j.ijfatigue.2022.107341.
  29. Krechkovska H., Hredil M., Student O. Book chapter 28: Fatigue crack growth resistance of heat-resistant steel 15H11МF after operation in blades of a steam turbine. Fatigue and Fracture of Materials and Structures / Eds. G. Lesiuk, S. Duda, J. A. F. O. Corea, A. M. P. De Jesus, Structural Integrity 24. Springer Nature Switzerland AG, 2022. P. 245‑251. URL: https://doi.org/10.1007/978-3-030-97822-8.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.