logo logo


Чисельна процедура на основі базових та корекційних рішень для розрахунку осьових напружень у трубопроводах, що проходять через зони шахтних виробок

НазваЧисельна процедура на основі базових та корекційних рішень для розрахунку осьових напружень у трубопроводах, що проходять через зони шахтних виробок
Назва англійськоюNumerical procedure based on basis and correction solutions for axial stress calculation in pipelines passing through zones of mine subsidence
АвториЯсковець, Захар Сергійович (Researcher ID: https://orcid.org/0000-0003-4529-0235), Ориняк, Ігор Володимирович (Researcher ID: https://orcid.org/0000-0001-7629-8868); Yaskovets, Zakhar (Researcher ID: https://orcid.org/0000-0003-4529-0235), Orynyak, Igor (Researcher ID: https://orcid.org/0000-0001-7629-8868)
ПринадлежністьІнститут проблем міцності імені Г.С. Писаренка НАН України, Київ, Україна ТОВ «Solid Master», Київ, Україна G. S. Pisarenko Institute for Problems of Strength of the NAS of Ukraine, Kyiv, Ukraine Solid Master Ltd, Kyiv, Ukraine
Бібліографічний описYaskovets Z. Numerical procedure based on basis and correction solutions for axial stress calculation in pipelines passing through zones of mine subsidence / Zakhar Yaskovets, Igor Orynyak // Scientific Journal of TNTU. — Tern. : TNTU, 2018. — Vol 91. — No 3. — P. 70–79. — (Mechanics and materials sciense).
Bibliographic description:Yaskovets Z., Orynyak I. (2018) Numerical procedure based on basis and correction solutions for axial stress calculation in pipelines passing through zones of mine subsidence. Scientific Journal of TNTU (Tern.), vol. 91, no 3, pp. 70-79.
DOI: https://doi.org/10.33108/visnyk_tntu2018.03.070
УДК

 

539.4

 

Ключові слова

магістральний трубопровід
шахтний виробіток
зсув ґрунту
осьові напруження
main pipeline
mining production
ground movement
axial stresses

Шахтні виробки можуть бути значною загрозою цілісності трубопроводів. Існує три складові, які кількісно визначають розподіл напружень уздовж трубопроводу – функцію переміщення землі по осі трубопроводу; фізичний закон взаємодії ґрунту і труби через їх відносні зсуви; реакцію деформації стінки труби на осьові напруження. Всі три з них, як правило, добре зрозумілі, але мало існує успішних прикладів прогнозування напружень у таких трубопроводах через брак ефективних алгоритмів їх урахування. Створено ефективну процедуру розрахунку осьових деформацій та переміщень на основі понять базових та корекційних рішень. Основне рішення алгебраїчно корегується після кожного кроку ітерації для рішення корекції, що отримано методом чисельно-ефективного матричного розкладу. Ефективність застосування алгоритму показано на реальному прикладі.
Mine subsidence can pose a considerable threat to pipeline integrity. There are three constituents which quantitatively determine the distribution of strains along the pipeline – the function of ground displacement along the pipeline axis; the physical law of soil-pipe interaction due to their relative displacements; and the pipe wall deformation response to axial stress. All three of them are usually well understood but there are still a small number of successful examples of prediction of stresses in such pipelines due to lack of effective algorithms of their accounting for. So here we develop the effective procedure for axial strain and displacement calculation based on notions of basic and correction solutions. The basic solution is algebraically corrected after each iteration step for correction solution, which obtained by numerically efficient transfer matrix method. The role of basic one is very narrow here: first it determines the particular type of law of soil-pipe interaction; second, the resulting solution is considered to be correct when basic and correction solutions coincide. The effectiveness of the algorithm application is shown on number of real examples.

References:

 

1. Guidelines for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and Subsidence Hazards. Pipeline Research Council International, Inc. Prepared by: C-CORE, D.G. Honegger Consulting, SSD, Inc. January 2009.
2. Dimitrios K. Karamitros, George D. Bouckovalas, George P. Kouretzis. Stress analysis of buried steel pipelines at strike-slip fault crossings. Soil Dynamics and Earthquake Engineering, Vol. 27, Issue 3, 2007, pp. 200 – 211, ISSN 0267 – 7261.
3. Kennedy R.P., Chow A.W., Williamson R.A. Fault movement effects on buried oil pipeline. Transport Eng J ASCE 1977;103:617 – 33.
4. ASCE Technical Council on Lifeline Earthquake Engineering. Differential Ground Movement Effects on Buried Pipelines. Guidelines for the Seismic Design of Oil and Gas Pipeline System 1984, pp. 150 – 228.
5. American Lifelines Alliance. Guidelines for the design of buried steel pipe. July 2001 (with addenda through February 2005).
6. Ainbinder A.B., Strength and Stability Design of Main and Field Pipelines. A Handbook, Nedra, Moscow, 1991 [In Russian].
7. CISPM, Comprehensive and Integrated Subsidence Prediction Model, Morgantown, WV, Version 2.0 User's Manual, Department of Mining Engineering, College of Engineering and Mineral Resources, West Virginia University.
8. Luo Y. and Peng S., “Integrated Approach for Predicting Mining Subsidence in Hilly Terrain”, Mining Engineering, June 1999.
9. Peng S.S. Surface subsidence engineering. Colorado, Society for Mining, Metallurgy, and Exploration Inc, 1992, 161 p.
10. Departmental Standard of Ukraine 101.00159226.001-2003. The rules for undermining of building, structures and natural objects at conventional extraction of coal. Ukrainian Ministry of Fuel and Energy. Kiev, 2004, 127 p. [In Ukraine].
11. C-CORE, 2008, Pipeline integrity for ground movement hazards, report prepared for Pipeline Research Council International and the U.S. Department of Transportation, C-CORE Report R-07-082-459.
12. Orynyak I.V., Yaskovets Z.S. The method of inner response functions for stress assessment of underground main gas pipelines situated in zones of mine subsidence. Strength of Materials, 2018.
13. Derby M.P., Saunders M.D., Zand B. Geotechnical Instrumentation. Monitoring Longitudinal Stress of a High Pressure Pipeline During Longwall Mining Operations. A Case Study in West Virginia. ASME. International Pipeline Conference, Vol. 3. Operations, Monitoring and Maintenance; Materials and Joining ():V003T04A017, doi:10.1115/IPC2016-64065. https://doi.org/10.1115/IPC2016-64065
14. Rajani B.B., Robertson P.K., Morgenstern N.R. Simplified design methods for pipelines subject to transverse and longitudinal soil movements. Canadian Geotechnical Journal, 1995, 32:309-323. https://doi.org/10.1139/t95-032
15. Nader Yoosef-Ghodsi, Joe Zhou and D.W. Murray. A Simplified Model for Evaluating Strain Demand in a Pipeline Subjected to Longitudinal Ground Movement. 2008 7-th International Pipeline Conference, Vol. 3, Paper No. IPC2008-64415, pp. 657 – 664; 8 pages.
16. W. Zhou (2012). Reliability of pressurised pipelines subjected to longitudinal ground movement, Structure and Infrastructure Engineering. Maintenance, Management, Life-Cycle Design and Performance, 8:12, 1123-1135, doi: 10.1080/15732479.2010.505244. https://doi.org/10.1080/15732479.2010.505244
17. Vazouras P., Karamanos S.A., and Dakoulas P., 2012, "Mechanical Behavior of Buried Steel Pipes Crossing Active Strike-Slip Faults", Soil Dyn. Earthquake. Eng., 41, pp. 164 – 180. https://doi.org/10.1016/j.soildyn.2012.05.012
18. Casamichele P, Maugeri M., Motta E. “Non-linear analysis of soil-pipeline interaction in unstable slopes”. XIII World Conference on Earthquake Engineering, Vancouver, Canada, August 1 – 6, 2004, No. 3161.
19. Vazouras P., Karamanos S.A., and Dakoulas P., 2010, "Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements," Soil Dyn. Earthquake Eng., 30 (11), pp. 1361 – 1376. https://doi.org/10.1016/j.soildyn.2010.06.011
20. Orynyak I.V., Bogdan A.V. Problem of large displacements of buried pipelines. Part 1. Working out a numerical procedure Strength of Materials, 2007, 39: 257. https://doi.org/10.1007/s11223-007-0032-2. https://doi.org/10.1007/s11223-007-0032-2
21. Orynyak I., Burak I., Okhrimchuk S, Novikov A., Pashchenko A. Assessment of Stress-Displacement State of Cable Suspended Pipeline Bridge During Inspection Pig Motion. ASME. International Pipeline Conference, Vol. 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines ():V002T02A010. doi:10.1115/IPC2016-64197. https://doi.org/10.1115/IPC2016-64197
22. Orynyak I., Radchenko S., Dubyk I. Application of the Transfer Matrix Method to the Analysis of Hydro-Mechanical Vibration of NPP Piping. ASME. ASME Pressure Vessels and Piping Conference, Vol. 4, Fluid-Structure Interaction():V004T04A049. doi:10.1115/PVP2013-97676. https://doi.org/10.1115/PVP2013-97676
23. SNiP 2.05.06-85. Main Pipelines, TsITP Gosstroya SSSR. Moscow, 1986 [In Russian].
24. SP 22.13330.2011. Foundations of buildings and structures. Moscow, 2011 [In Russian].
1. Guidelines for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and Subsidence Hazards. Pipeline Research Council International, Inc. Prepared by: C-CORE, D.G. Honegger Consulting, SSD, Inc. January 2009.
2. Dimitrios K. Karamitros, George D. Bouckovalas, George P. Kouretzis. Stress analysis of buried steel pipelines at strike-slip fault crossings. Soil Dynamics and Earthquake Engineering, Vol. 27, Issue 3, 2007, pp. 200 – 211, ISSN 0267 – 7261.
3. Kennedy R.P., Chow A.W., Williamson R.A. Fault movement effects on buried oil pipeline. Transport Eng J ASCE 1977;103:617 – 33.
4. ASCE Technical Council on Lifeline Earthquake Engineering. Differential Ground Movement Effects on Buried Pipelines. Guidelines for the Seismic Design of Oil and Gas Pipeline System 1984, pp. 150 – 228.
5. American Lifelines Alliance. Guidelines for the design of buried steel pipe. July 2001 (with addenda through February 2005).
6. Ainbinder A.B., Strength and Stability Design of Main and Field Pipelines. A Handbook, Nedra, Moscow, 1991 [In Russian].
7. CISPM, Comprehensive and Integrated Subsidence Prediction Model, Morgantown, WV, Version 2.0 User's Manual, Department of Mining Engineering, College of Engineering and Mineral Resources, West Virginia University.
8. Luo Y. and Peng S., “Integrated Approach for Predicting Mining Subsidence in Hilly Terrain”, Mining Engineering, June 1999.
9. Peng S.S. Surface subsidence engineering. Colorado, Society for Mining, Metallurgy, and Exploration Inc, 1992, 161 p.
10. Departmental Standard of Ukraine 101.00159226.001-2003. The rules for undermining of building, structures and natural objects at conventional extraction of coal. Ukrainian Ministry of Fuel and Energy. Kiev, 2004, 127 p. [In Ukraine].
11. C-CORE, 2008, Pipeline integrity for ground movement hazards, report prepared for Pipeline Research Council International and the U.S. Department of Transportation, C-CORE Report R-07-082-459.
12. Orynyak I.V., Yaskovets Z.S. The method of inner response functions for stress assessment of underground main gas pipelines situated in zones of mine subsidence. Strength of Materials, 2018.
13. Derby M.P., Saunders M.D., Zand B. Geotechnical Instrumentation. Monitoring Longitudinal Stress of a High Pressure Pipeline During Longwall Mining Operations. A Case Study in West Virginia. ASME. International Pipeline Conference, Vol. 3. Operations, Monitoring and Maintenance; Materials and Joining ():V003T04A017, doi:10.1115/IPC2016-64065. https://doi.org/10.1115/IPC2016-64065
14. Rajani B.B., Robertson P.K., Morgenstern N.R. Simplified design methods for pipelines subject to transverse and longitudinal soil movements. Canadian Geotechnical Journal, 1995, 32:309-323. https://doi.org/10.1139/t95-032
15. Nader Yoosef-Ghodsi, Joe Zhou and D.W. Murray. A Simplified Model for Evaluating Strain Demand in a Pipeline Subjected to Longitudinal Ground Movement. 2008 7-th International Pipeline Conference, Vol. 3, Paper No. IPC2008-64415, pp. 657 – 664; 8 pages.
16. W. Zhou (2012). Reliability of pressurised pipelines subjected to longitudinal ground movement, Structure and Infrastructure Engineering. Maintenance, Management, Life-Cycle Design and Performance, 8:12, 1123-1135, doi: 10.1080/15732479.2010.505244. https://doi.org/10.1080/15732479.2010.505244
17. Vazouras P., Karamanos S.A., and Dakoulas P., 2012, "Mechanical Behavior of Buried Steel Pipes Crossing Active Strike-Slip Faults", Soil Dyn. Earthquake. Eng., 41, pp. 164 – 180. https://doi.org/10.1016/j.soildyn.2012.05.012
18. Casamichele P, Maugeri M., Motta E. “Non-linear analysis of soil-pipeline interaction in unstable slopes”. XIII World Conference on Earthquake Engineering, Vancouver, Canada, August 1 – 6, 2004, No. 3161.
19. Vazouras P., Karamanos S.A., and Dakoulas P., 2010, "Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements," Soil Dyn. Earthquake Eng., 30 (11), pp. 1361 – 1376. https://doi.org/10.1016/j.soildyn.2010.06.011
20. Orynyak I.V., Bogdan A.V. Problem of large displacements of buried pipelines. Part 1. Working out a numerical procedure Strength of Materials, 2007, 39: 257. https://doi.org/10.1007/s11223-007-0032-2. https://doi.org/10.1007/s11223-007-0032-2
21. Orynyak I., Burak I., Okhrimchuk S, Novikov A., Pashchenko A. Assessment of Stress-Displacement State of Cable Suspended Pipeline Bridge During Inspection Pig Motion. ASME. International Pipeline Conference, Vol. 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines ():V002T02A010. doi:10.1115/IPC2016-64197. https://doi.org/10.1115/IPC2016-64197
22. Orynyak I., Radchenko S., Dubyk I. Application of the Transfer Matrix Method to the Analysis of Hydro-Mechanical Vibration of NPP Piping. ASME. ASME Pressure Vessels and Piping Conference, Vol. 4, Fluid-Structure Interaction():V004T04A049. doi:10.1115/PVP2013-97676. https://doi.org/10.1115/PVP2013-97676
23. SNiP 2.05.06-85. Main Pipelines, TsITP Gosstroya SSSR. Moscow, 1986 [In Russian].
24. SP 22.13330.2011. Foundations of buildings and structures. Moscow, 2011 [In Russian].

 

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.