logo logo


Integration of magnetic amplifier switch model into computer aided design for power converters

НазваIntegration of magnetic amplifier switch model into computer aided design for power converters
Назва англійськоюIntegration of magnetic amplifier switch model into computer aided design for power converters
АвториAnna Yaskiv (https://orcid.org/0000-0003-1806-1322); Bohdan Yavorskyy (https://orcid.org/0000-0003-4215-1176)
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описIntegration of magnetic amplifier switch model into computer aided design for power converters / Anna Yaskiv; Bohdan Yavorskyy / Scientific Journal of TNTU. — Tern. : TNTU, 2019. — Vol 94. — No 2. — P. 123–133. — (Mathematical modeling. Mathematics).
Bibliographic description:Yaskiv A.; Yavorskyy B. (2019) Integration of magnetic amplifier switch model into computer aided design for power converters.Scientific Journal of TNTU (Tern.), vol. 94, no 2, pp. 123-133.
DOI: https://doi.org/10.33108/visnyk_tntu2019.02.123
УДК

621.318.4

Ключові слова

mathematical model, magnetic amplifier switch, CAD programme, magnetic hysteresis, computer simulation.

The designing of electrical power converters based on Magnetic Amplifier (MagAmp) switches is not fully automated. MagAmp is a magnetic component with nonlinear properties. Computer aided design (CAD) programmes are built to simulate electric circuits without electromagnetic field with distributed components. There is a problem of integration of a model of a component with magnetic hysteresis into the set of CAD models. In addition, estimation of the optimal parameters of such a component is rather complicated. The article proposes a new model of MagAmp switch which is based on a function that can be generated using digital technology. The digital generator of sinusoidal signals, consisting of discrete digital components for modeling the MagAmp switch, is investigated. Integration of the model into CAD programme and simulation of the electric circuit, which includes MagAmp switch, are obtained. Partial automation will reduce complexity, duration and cost of the design procedure, and will enhance the development of power converters.

ISSN:2522-4433
Перелік літератури
  1. http://elnamagnetics.
    com/wp-content/uploads/library/Magnetics-Documents/Mag_Amp_Cores_and_Materials.pdf
    (accessed 22.10.2018).
  2. Yaskiv A. Matematychne modeliuvannia protsesiv peremagnichennia magnitomyakyh materialiv z vysokoyu krutyznoyu petli gisterezysu. Mizhnarodnyi naukovo-tehnichnyi zhurnal Vymiriuvalna ta Obchysliuvalna Tehnika v Tehnologichnyh Protsesah. 2015. No. 4 (53). Р. 112–118. [In Ukrainian].
  3. Yaskiv V., Yaskiv A., Yurchenko O. Synchronous rectification in high-frequency MagAmp power converters. Proceedings of International conference Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czech Republic, 1–3 June 2018. Р. 128–131.
  4. Tatevosian A. S., Tatevosian A. S., Zaharova N. V., Shelkovnikov S. V. Eksperementalnoe issledovanie i raschet magnitnogo polia elektromagnita postoyannogo toka s rasshcheplennymi poliusami i poliusnymi nakonechnikami v komplekse program ELCUT. Izvestiya Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov. 2016. Vol. 327. No. 2. Р. 133–140. [In Russian].
  5. Antonov S. N., Sharipov I. K., Shemiakin V. N., Adoshev A. I. Modelirovanie magnitnyh sistem s ispolzovaniem sistem avtomatizirovannogo proektirovaniya. Dostizheniya nauki i tehniki APK. 2010. No. 10. Р. 75–78. [In Russian].
  6. Karpukhin E. V., Diatkov V. S., Diomin S. B. Komplex programm dlia rascheta magnitnyh polei magnitostriktsyonnyh preobrazovatelei urovnia. Vestnik IzhTU. 2012. No. 1 (53). Р. 109–112. [In Russian].
  7. ANSYS Inc. Balance of power. ANSYS Advantage. Vol. 8. No. 2. 2014. Рp. 33–35. URL: https://www. ansys.com/-/media/ansys/corporate/resourcelibrary/article/balance-of-power-multiphysics-aa-v8-i2.pdf.
  8. Klatt R., Krawczyk F., Novender W.-R., Palm C., Weiland T. MAFIA – A three-dimensional electromagnetic CAD system for magnets, RF structures, and transient wake-field calculations. Proceedings of the 1986 International Linac Conference, Stanford, California, USA. Р. 276–278.
  9. Lowther D. A., Silvester P. P. Computer-Aided Design in Magnetics. Springer-Verlag New York Inc., 1986. 323 p. ISBN-13: 978-3-642-70671-4.
  10. Poisson equation, solving with DFT. URL: https://algowiki-project.org/en/Poisson_equation,_solving_ with_DFT.
  11. Krasnoselskiy M. A., Pokrovskiy A. V. Sistemy s histeresisom. Moscow: Nauka Publ., 1983. 272 p. [Іn Russian].
  12. Bertotti G., Mayergoyz I. The Science of Hysteresis. Volume 1. Mathematical Modeling and Applications. Elsevier Inc., 2006. 751 p. ISBN: 0-1248-0874-3.
  13. Jiles D. C., Atherton D. L. Theory of Ferromagnetic Hysteresis. Journal of Magnetism and Magnetic Materials. 1986. Vol. 61. Р. 48–60.
  14. Chan J. H., Vladimirescu A., Gao A., X., Liebmann P., Valainis J. Nonlinear Transformer Model for Circuit Simulation. IEEE Transactions on Computer-Aided Design. 1991. Vol. 10. No. 4. Р. 476–482.
  15. Shopen L. V. Beskontaktnye elektricheskie apparaty avtomatiki: uchebnik dlya studentov vuzov, obuchayushhihsya po specialnosti “Elektricheskie apparaty”. Moscow: Energiia Publ., 1967. 568 p. [In Russian].
  16. Preisach F. Uber die magnetische Nachwirkung. Zeitschrift fur Physik. 1935. No. 94. Рp. 861–890. [In German].
  17. Mayergoyz I. Mathematical Models of Hysteresis and Their Applications. Elsevier Science Inc., 2003. 498 p. (second addition).
  18. Sutor A., Rupitsch S. J., Bi S., Lerch R. A modified Preisach hysteresis operator for the modeling of temperature-dependent magnetic material behaviour. Journal of Applied Physics. 2011. Vol. 109. No. 7. i. d. No 07D338.
  19. Dupre L, Melkebeek J. Electromagnetic hysteresis modelling: from material science to finite element analysis of devices. International Society Compumag Newsletter. 2003. Vol. 10. No. 3. Р. 4–15.
  20. Szewczyk R. Computational Problems Connected with Jiles-Atherton Model of Magnetic Hysteresis. Recent Advances in Atomation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing. 2014. Vol. 267. Р. 275–283.
  21. Shkurnikov E. V. Programmnyy modul pereschiota parametrov ferromagnetikov v spetsyalizirovannoy kompyuternoy sisteme. Radioelektronni i Kompyuterni Systemy. 2012. No. 3. Р. 101–105. [In Russian].
  22. Petrescu L., Cazacu E., Petrescu C. Sigmoid functions used in magnetic hysteresis modeling. Proceedings of the 9th International symposium on advanced topics in electrical engineering (ATEE 2005), Bucharest, Romania, 7–9 May 2005. Р. 521–524.
  23. Edry D., Ben-Yaakov  S. A SPICE Compatible Model of Magamp Post. Regulators. IEEE Applied Power Electronics Conference (APEC’92), 1992. Р. 793–800.
  24. Jovanovic M. M., Huber L. Small-Signal Modeling of Magamp PWM Switch. Applied Power Electronics Conference, 1997. Р. 922–928.
  25. Yavorskyy B. I. Matematychni osnovy radioelektroniky. Chastyna I. Ternopil: TPI imeni Ivana Puluja, 1996. 184 p. [In Ukrainian].
  26. Yavorskyy B. I., Gudz I. S. Tsyfrovoy generator sinusa: рatent of USSR No. SU1092516A, 15.05.1984. [In Russian].
  27. Polik Z., Miklos K. Measuring and control the hysteresis loop by using analog and digital integrators. Journal of optoelectronics and advanced materials. 2008. Vol. 10. No. 7. Р. 1861–1865.
References:

The designing of electrical power converters based on Magnetic Amplifier (MagAmp) switches is not fully automated. MagAmp is a magnetic component with nonlinear properties. Computer aided design (CAD) programmes are built to simulate electric circuits without electromagnetic field with distributed components. There is a problem of integration of a model of a component with magnetic hysteresis into the set of CAD models. In addition, estimation of the optimal parameters of such a component is rather complicated. The article proposes a new model of MagAmp switch which is based on a function that can be generated using digital technology. The digital generator of sinusoidal signals, consisting of discrete digital components for modeling the MagAmp switch, is investigated. Integration of the model into CAD programme and simulation of the electric circuit, which includes MagAmp switch, are obtained. Partial automation will reduce complexity, duration and cost of the design procedure, and will enhance the development of power converters.

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.