logo logo


Technological features of welding of plastics based on polyhydroxybutyrate

НазваTechnological features of welding of plastics based on polyhydroxybutyrate
Назва англійськоюTechnological features of welding of plastics based on polyhydroxybutyrate
АвториVictoriya Talanyuk (https://orcid.org/0000-0001-8541-5368); Andriy Shadrin; Maksym Iurzhenko; Mykola Korab; Andriy Agapov.
ПринадлежністьE. O. Paton Electric Welding Institute of the NAS of Ukraine, Kyiv, Ukraine Technical Center of the NAS of Ukraine, Kyiv, Ukraine
Бібліографічний описTechnological features of welding of plastics based on polyhydroxybutyrate / Victoriya Talanyuk; Andriy Shadrin; Maksym Iurzhenko; Mykola Korab; Andriy Agapov // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 97. — No 1. — P. 65–71.
Bibliographic description:Talanyuk V.; Shadrin A.; Iurzhenko M.; Korab M.; Agapov A. (2020) Technological features of welding of plastics based on polyhydroxybutyrate. Scientific Journal of TNTU (Tern.), vol 97, no 1, pp. 65–71.
DOI: https://doi.org/10.33108/visnyk_tntu2020.01.065
УДК

621.384.3:621.791:615.462-035

Ключові слова

biodegradable, polyoxyalkonoates, thermoplastic polymer, bioplastic, polyhydroxybutyrate.

In particular polymers and biopolymers are increasingly used in various sectors of the economy and more recently biopolymers have been replacing traditional polymers in many applications. The problem of recycling polymeric materials can also be solved by designing products that will facilitate their further processing. In fact, biodegradation is the consistent breaking of chemical bonds of a polymer molecular chain under the action of microorganisms. Destroying a polymer, bacteria, fungi or algae uses the remnants of its molecules as a source of vital organic compounds as well as energy. Usually biodegradation occurs in an aqueous or humid environment during the process of composting. Bioplastics` wastes, like fallen leaves or other organic wastes, are stacked on soil and gradually converted into environmentally friendly material. The ability of a polymer to biodegrade mainly depends on the chemical composition of its molecule. One of the urgent tasks of research and implementation of biopolymers is the connection, in particular welding. Traditionally, plastic welding is widely used in the chemical, food, and other industries, for film packaging and packaging.

ISSN:2522-4433
Перелік літератури
  1. Ramsay J. A., Berger E., Voyer R., Chavarie C., Ramsay B. A. Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnology Techniques. 1994. 8. Р. 589–594. DOI: 10.1007/BF00152152.
  2. Jacquel N., Lo C.-W. Isolation and purification of bacterial poly (3-hydroxy alkanoates) Biochemical Engineering Journal. 2008. 39 (1). Р. 15–27. DOI: 10.1016/j.bej.2007.11.029.
  3. Al-Majed A. A., Abd-Allah A. R., Al-Rikabi A. C., Al-Shabanah O. A. & Mostafa A. M. Effect of oral administration of Arabic gum on cisplatin-induced nephrotoxicity in rats. Journal of Biochemical and Molecular Toxicology. 2013. Vol. 17. No. 3. Р. 146–153. ISSN: 1099-0461.
  4. Jiang X., Ramsay J. A., Ramsay B. A.: Acetone extrac- tion of mcl-PHA from Pseudomonas putida KT2440. Journal of Microbiological Methods. 2006. 67. Р. 212–219. DOI: 10.1016/j.mimet.2006.03.015.
  5. Yu J., Chen L. X. L. Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnology Progress. 2006. 22. Р. 547–553. DOI: 10.1021/bp050362g.
  6. Amanat N., James N. L., McKenzie D. R. Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices. Medical Enjineering and physics. 2010. Vol. 32. Р. 600–699. DOI: 10.1021/ie9707432.
  7. Rydz J., Wolna-Stypka K., Adamus G., Janeczek H., Musioł M., Sobota M., Marcinkowski A., Krzan A., Kowalczuk M. Forensic engineering of advanced polymeric materials. Part 1 – degradation studies of polylactide blends with atactic poly [(R, S)-3-hydroxybutyrate] in paraffin. Chem Biochem Eng Quart 29: 247–259.
  8. Kataev R. F. Welding of plastics. Textbook. Ekaterinburg: UPI Publishing House, 2008. 138 p.
  9. Maximilian Brosda, Phong Nguyen, Alexander Olowinsky, Arnold Gillner Laserwelding of biopolymers. Procedia CIRP. Volume 74. 2018. P. 548–552. URL: https://doi.org/10.1016/j.procir.2018.08.116.
  10. Karla Enid Lebron, Iowa State University. Interfacial healing and transport phenomena modeling of biopolymers. 2017.
  11. Hanuma Reddy Tiyyagura, Tamilse lvan Mohan, Snehashis Pal, Mantravadi Krishna Mohan. 9 – Surface modification of Magnesium and its alloy as orthopedic biomaterials with biopolymers. Fundamental Biomaterials. Metals Woodhead Publishing Series in Biomaterials. 2018. P. 197–210. URL: https:// doi.org/10.1016/B978-0-08-102205-4.00009-X.
  12. Iurzhenko M., Shestopal A., Gokhfeid V., Korab M., Vasilijev Yu., Shadrin A., Demchenko V., Gusakova K. Dictionary-handbook on welding and glueing of plastics. 2018. Р. 368.
References:
  1. Ramsay J. A., Berger E., Voyer R., Chavarie C., Ramsay B. A. Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnology Techniques. 1994. 8. Р. 589–594. DOI: 10.1007/BF00152152.
  2. Jacquel N., Lo C.-W. Isolation and purification of bacterial poly (3-hydroxy alkanoates) Biochemical Engineering Journal. 2008. 39 (1). Р. 15–27. DOI: 10.1016/j.bej.2007.11.029.
  3. Al-Majed A. A., Abd-Allah A. R., Al-Rikabi A. C., Al-Shabanah O. A. & Mostafa A. M. Effect of oral administration of Arabic gum on cisplatin-induced nephrotoxicity in rats. Journal of Biochemical and Molecular Toxicology. 2013. Vol. 17. No. 3. Р. 146–153. ISSN: 1099-0461.
  4. Jiang X., Ramsay J. A., Ramsay B. A.: Acetone extrac- tion of mcl-PHA from Pseudomonas putida KT2440. Journal of Microbiological Methods. 2006. 67. Р. 212–219. DOI: 10.1016/j.mimet.2006.03.015.
  5. Yu J., Chen L. X. L. Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnology Progress. 2006. 22. Р. 547–553. DOI: 10.1021/bp050362g.
  6. Amanat N., James N. L., McKenzie D. R. Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices. Medical Enjineering and physics. 2010. Vol. 32. Р. 600–699. DOI: 10.1021/ie9707432.
  7. Rydz J., Wolna-Stypka K., Adamus G., Janeczek H., Musioł M., Sobota M., Marcinkowski A., Krzan A., Kowalczuk M. Forensic engineering of advanced polymeric materials. Part 1 – degradation studies of polylactide blends with atactic poly [(R, S)-3-hydroxybutyrate] in paraffin. Chem Biochem Eng Quart 29: 247–259.
  8. Kataev R. F. Welding of plastics. Textbook. Ekaterinburg: UPI Publishing House, 2008. 138 p.
  9. Maximilian Brosda, Phong Nguyen, Alexander Olowinsky, Arnold Gillner Laserwelding of biopolymers. Procedia CIRP. Volume 74. 2018. P. 548–552. URL: https://doi.org/10.1016/j.procir.2018.08.116.
  10. Karla Enid Lebron, Iowa State University. Interfacial healing and transport phenomena modeling of biopolymers. 2017.
  11. Hanuma Reddy Tiyyagura, Tamilse lvan Mohan, Snehashis Pal, Mantravadi Krishna Mohan. 9 – Surface modification of Magnesium and its alloy as orthopedic biomaterials with biopolymers. Fundamental Biomaterials. Metals Woodhead Publishing Series in Biomaterials. 2018. P. 197–210. URL: https:// doi.org/10.1016/B978-0-08-102205-4.00009-X.
  12. Iurzhenko M., Shestopal A., Gokhfeid V., Korab M., Vasilijev Yu., Shadrin A., Demchenko V., Gusakova K. Dictionary-handbook on welding and glueing of plastics. 2018. Р. 368.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.