logo logo


Unification of the analog part of the biosignal processing channel

НазваUnification of the analog part of the biosignal processing channel
Назва англійськоюUnification of the analog part of the biosignal processing channel
АвториVolodymyr Khoma (http://orcid.org/0000-0001-9391-6525); Yuriy Khoma (http://orcid.org/0000-0002-4677-5392); Orest Kochan (: https://orcid.org/0000-0002-3164-3821)
ПринадлежністьLviv Polytechnic National University, Lviv, Ukraine School of Computer Science, Hubei University of Technology, Wuhan, China
Бібліографічний описUnification of the analog part of the biosignal processing channel / Volodymyr Khoma; Yuriy Khoma; Orest Kochan // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 97. — No 1. — P. 97–109.
Bibliographic description:Khoma V.; Khoma Yu.; Kochan O. (2020) Unification of the analog part of the biosignal processing channel. Scientific Journal of TNTU (Tern.), vol 97, no 1, pp. 97–109.
DOI: https://doi.org/10.33108/visnyk_tntu2020.01.097
УДК

621.317

Ключові слова

bio-signal, bio-impedance, sensor fusion, measuring channel, distortion resistance.

Measurement methods and design principles for measuring channel are considered in this paper. They extend the capacity of improving noise immunity and resolution of bio-signals measurement means. The analog parts of measuring channels for measurement of different kinds of bio-signals, as well as the sources of errors for such channels are analyzed. The structure of the analog part of the high-precision universal measuring channel (invariant to the type of the measured bio-signal) is developed on the basis of this analysis.

ISSN:2522-4433
Перелік літератури
  1. Rangayyan R. Biomedical Signal Analysis. A Case-Study Approach. John Willey and Sons Inc. 2015. 552 p. DOI:10.1002/9781119068129.
  2. Dozorska O. The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific Journal of TNTU. 2018. Vol. 92. No 4.
    Р. 126–132.
  3. Zhevandrova YA., Syropyatov A., Buryak V. Kompleksnaya byometrycheskaya autentyfykatsyya lychnosty. Systemy obrobky informatsiyi. 2016. Vol. 141. Issue 4. Р. 104–107. [Іn Russian].
  4. Niedenthal P. M., Halberstadt J. B., Margolin J., Innes-Ker A. H. Emotional state and the detection of change in facial expression of emotion in European Journal of Social Psychology. Vol. 2000. No. 30.
    Р. 211–222. URL: https://doi.org/10.1002/(SICI)1099-0992(200003/04)30:2%3C211::AID-EJSP988% 3E3.0.CO.
  5. Khoma Y. V., Stadnyk B. I., Mykyychuk M. M., Frish S. Metody i zasoby vymiryuvannya ta kompyuternoho opratsyuvannya biosyhnaliv. Vymiryuvalʹna tekhnika ta metrolohiya. 2018. Vol. 79.
     Issue 3. Р. 5–16. URL: https://doi.org/10.23939/istcmtm2018.03.005. [Іn Ukranian].
  6. Pelc M., Khoma Y., Khoma V. ECG Signal as Robust and Reliable Biometric Marker: Datasets and Algorithms Comparison in Sensors. 2019. Vol. 19. No. 10. 2350. P. 1–8. DOI: 10.3390/s19102350.
  7. Sverstiuk A. Comparative analysis of results of numerical simulation of cyber-physical biosensor systems on the basis of lattice differential equations. Scientific Journal of TNTU. 2019. Vol 95. No. 3.
    Р. 123–138.
  8. Abakumov V. H., Hotra Z. Y., Zlepko S. M., et all. Reyestratsiya, obrobka ta kontrolʹ biomedychnykh syhnaliv. Vinnytsya: VNTU, 2011. 352 p. [Іn Ukranian].
  9. Ogloblin S., Molchanov A. Instrumental'naya “detektsiya lzhi”. Yaroslavl': Nyuans, 2004. 411 p. [In Russian].
  10. Jun S., Kochan O. Common mode noise rejection in measuring channels. In Instruments and Experimental Techniques. 2015. Vol. 58. No. 1. P. 86–89. URL:https://doi.org/10.1134/S00204412150 10091.
  11. Valverde E. R., Arini P. D., Bertran G. C., Biagetti M. O., Quinteiro R. A. Effect of electrode impedance in improved buffer amplifier for bioelectric recordings. Journal of Medical Engineering & Technology. 2004. Vol. 28. Issue 5. P. 217–222. DOI: 10.1080/03091900410001662323.
  12. Storchun Y. V. Matviychuk Y. M. Biofizychni ta matematychni osnovy instrumentalʹnykh metodiv medychnoyi diahnostyky. Lʹviv: Rastr-7, 2009. 216 p. [In Ukranian].
  13. Khoma V., Pelc M., Khoma Y. Artificial Neural Network Capability for Human Being Identification based on ECG Proceedings: the 23rd International Conference on Methods and Models in Automation and Robotics (Miedzyzdroje, 27–30 August 2018.). Miedzyzdroje, 2018. Р. 479–482.
  14. Khoma V., Pelc M., Khoma Y., Sabodashko D. Outlier Correction in ECG-Based Human Identification. Biomedical Engineering and Neuroscience. BCI 2018. Advances in Intelligent Systems and Computing. Vol. 720. 2018. P. 11–22. URL: https://doi.org/10.1007/978-3-319-75025-5_2.
  15. Fratini A., Sansone M., Bifulco P., Cesarel M. Individual identification via electrocardiogram analysis. BioMed. Eng. OnLine. 2015. Vol. 14. Р. 1–23. DOI: 10.1186/s12938-015-0072-y.
  16. Von Luhmann A., Wabnitz H., Sander T., Muller K.-R. A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring in IEEE Transactions on biomedical engineering. 2017. Vol. 64. No. 6. Р. 1199–1210. DOI: 10.1109/TBME. 2016.2594127.
  17. Aleksandrowicz A., Leonhardt S. Wireless and Non-contact ECG Measurement System – the «Aachen SmartChair» in Acta Polytechnica. 2007. Vol. 47. No. 4–5. Р. 68–71.
  18. Jun S., Kochan O., Chunzhi W., Kochan R. Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. In Measurement Science Review. 2015. Vol. 15. No. 6. Р. 304–312. DOI: 10.1515/msr-2015-0041.
  19. Wang J., Kochan O., Przystupa K., Su J. Information-measuring System to Study the Thermocouple with Controlled Temperature Field. In Measurement Science Review. 2019. Vol. 19. No. 4. Р. 161–169. DOI: 10.2478/msr-2019-0022.
  20. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. URL: https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (last access: 21.09.19).
  21. Orozco L. Synchronous Detectors Facilitate Precision, Low-Level Measurements. Analog Dialogue 48-11, November 2014. URL: https://www.analog.com/media/en/analog-dialogue/volume-48/number-4/articles/synchronous-detectors-facilitate-precision.pdf (last access: 29.09.19).
  22. He C.,Zhang L., Liu B., Xu Z., Zhang Z., A digital phase-sensitive detector for electrical impedance tomography. In 2008 World Automation Congress. WAC-2008. 28 Sept.–2 Oct. 2008. Р. 1–4.
  23. Zhengbing H., Kochan R., Kochan O., Jun S., Klym H. Method of integral nonlinearity testing and correction of multi-range ADC by direct measurement of output voltages of multi-resistors divider. In ACTA IMEKO. 2015. Vol. 4. No. 2. Р. 80–84. DOI: 10.21014/acta_imeko.v4i2.230.
  24. AN-1515 A comprehensive study of the howland current pump. Application Report SNOA474A – January 2008–Revised April 2013. Р. 1–17.
  25. Jian Q., Qun S., Xiaoliang W., Chong W., Linlin C. Design and analysis of a low cost wave generator based on direct digital synthesis. In Journal of Electrical and Computer Engineering. 2015. Vol. 17.
    Р. 1–17.
References:
  1. Rangayyan R. Biomedical Signal Analysis. A Case-Study Approach. John Willey and Sons Inc. 2015. 552 p. DOI:10.1002/9781119068129.
  2. Dozorska O. The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific Journal of TNTU. 2018. Vol. 92. No 4.
    Р. 126–132.
  3. Zhevandrova YA., Syropyatov A., Buryak V. Kompleksnaya byometrycheskaya autentyfykatsyya lychnosty. Systemy obrobky informatsiyi. 2016. Vol. 141. Issue 4. Р. 104–107. [Іn Russian].
  4. Niedenthal P. M., Halberstadt J. B., Margolin J., Innes-Ker A. H. Emotional state and the detection of change in facial expression of emotion in European Journal of Social Psychology. Vol. 2000. No. 30.
    Р. 211–222. URL: https://doi.org/10.1002/(SICI)1099-0992(200003/04)30:2%3C211::AID-EJSP988% 3E3.0.CO.
  5. Khoma Y. V., Stadnyk B. I., Mykyychuk M. M., Frish S. Metody i zasoby vymiryuvannya ta kompyuternoho opratsyuvannya biosyhnaliv. Vymiryuvalʹna tekhnika ta metrolohiya. 2018. Vol. 79.
     Issue 3. Р. 5–16. URL: https://doi.org/10.23939/istcmtm2018.03.005. [Іn Ukranian].
  6. Pelc M., Khoma Y., Khoma V. ECG Signal as Robust and Reliable Biometric Marker: Datasets and Algorithms Comparison in Sensors. 2019. Vol. 19. No. 10. 2350. P. 1–8. DOI: 10.3390/s19102350.
  7. Sverstiuk A. Comparative analysis of results of numerical simulation of cyber-physical biosensor systems on the basis of lattice differential equations. Scientific Journal of TNTU. 2019. Vol 95. No. 3.
    Р. 123–138.
  8. Abakumov V. H., Hotra Z. Y., Zlepko S. M., et all. Reyestratsiya, obrobka ta kontrolʹ biomedychnykh syhnaliv. Vinnytsya: VNTU, 2011. 352 p. [Іn Ukranian].
  9. Ogloblin S., Molchanov A. Instrumental'naya “detektsiya lzhi”. Yaroslavl': Nyuans, 2004. 411 p. [In Russian].
  10. Jun S., Kochan O. Common mode noise rejection in measuring channels. In Instruments and Experimental Techniques. 2015. Vol. 58. No. 1. P. 86–89. URL:https://doi.org/10.1134/S00204412150 10091.
  11. Valverde E. R., Arini P. D., Bertran G. C., Biagetti M. O., Quinteiro R. A. Effect of electrode impedance in improved buffer amplifier for bioelectric recordings. Journal of Medical Engineering & Technology. 2004. Vol. 28. Issue 5. P. 217–222. DOI: 10.1080/03091900410001662323.
  12. Storchun Y. V. Matviychuk Y. M. Biofizychni ta matematychni osnovy instrumentalʹnykh metodiv medychnoyi diahnostyky. Lʹviv: Rastr-7, 2009. 216 p. [In Ukranian].
  13. Khoma V., Pelc M., Khoma Y. Artificial Neural Network Capability for Human Being Identification based on ECG Proceedings: the 23rd International Conference on Methods and Models in Automation and Robotics (Miedzyzdroje, 27–30 August 2018.). Miedzyzdroje, 2018. Р. 479–482.
  14. Khoma V., Pelc M., Khoma Y., Sabodashko D. Outlier Correction in ECG-Based Human Identification. Biomedical Engineering and Neuroscience. BCI 2018. Advances in Intelligent Systems and Computing. Vol. 720. 2018. P. 11–22. URL: https://doi.org/10.1007/978-3-319-75025-5_2.
  15. Fratini A., Sansone M., Bifulco P., Cesarel M. Individual identification via electrocardiogram analysis. BioMed. Eng. OnLine. 2015. Vol. 14. Р. 1–23. DOI: 10.1186/s12938-015-0072-y.
  16. Von Luhmann A., Wabnitz H., Sander T., Muller K.-R. A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring in IEEE Transactions on biomedical engineering. 2017. Vol. 64. No. 6. Р. 1199–1210. DOI: 10.1109/TBME. 2016.2594127.
  17. Aleksandrowicz A., Leonhardt S. Wireless and Non-contact ECG Measurement System – the «Aachen SmartChair» in Acta Polytechnica. 2007. Vol. 47. No. 4–5. Р. 68–71.
  18. Jun S., Kochan O., Chunzhi W., Kochan R. Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. In Measurement Science Review. 2015. Vol. 15. No. 6. Р. 304–312. DOI: 10.1515/msr-2015-0041.
  19. Wang J., Kochan O., Przystupa K., Su J. Information-measuring System to Study the Thermocouple with Controlled Temperature Field. In Measurement Science Review. 2019. Vol. 19. No. 4. Р. 161–169. DOI: 10.2478/msr-2019-0022.
  20. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. URL: https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (last access: 21.09.19).
  21. Orozco L. Synchronous Detectors Facilitate Precision, Low-Level Measurements. Analog Dialogue 48-11, November 2014. URL: https://www.analog.com/media/en/analog-dialogue/volume-48/number-4/articles/synchronous-detectors-facilitate-precision.pdf (last access: 29.09.19).
  22. He C.,Zhang L., Liu B., Xu Z., Zhang Z., A digital phase-sensitive detector for electrical impedance tomography. In 2008 World Automation Congress. WAC-2008. 28 Sept.–2 Oct. 2008. Р. 1–4.
  23. Zhengbing H., Kochan R., Kochan O., Jun S., Klym H. Method of integral nonlinearity testing and correction of multi-range ADC by direct measurement of output voltages of multi-resistors divider. In ACTA IMEKO. 2015. Vol. 4. No. 2. Р. 80–84. DOI: 10.21014/acta_imeko.v4i2.230.
  24. AN-1515 A comprehensive study of the howland current pump. Application Report SNOA474A – January 2008–Revised April 2013. Р. 1–17.
  25. Jian Q., Qun S., Xiaoliang W., Chong W., Linlin C. Design and analysis of a low cost wave generator based on direct digital synthesis. In Journal of Electrical and Computer Engineering. 2015. Vol. 17.
    Р. 1–17.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.