logo logo


Investigation of the hot rolling process at the steckel mill by means of modeling by the finite-element method

НазваInvestigation of the hot rolling process at the steckel mill by means of modeling by the finite-element method
Назва англійськоюInvestigation of the hot rolling process at the steckel mill by means of modeling by the finite-element method
АвториOleksandr Kurpe (https://orcid.org/0000-0003-2039-7239); Volodymyr Kukhar (https://orcid.org/0000-0002-4863-7233)
ПринадлежністьPryazovskyi State Technical University, Mariupol, Ukraine
Бібліографічний описInvestigation of the hot rolling process at the steckel mill by means of modeling by the finite-element method / Oleksandr Kurpe; Volodymyr Kukhar // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 98. — No 2. — P. 68–79.
Bibliographic description:Kurpe O.; Kukhar V. (2020) Investigation of the hot rolling process at the steckel mill by means of modeling by the finite-element method. Scientific Journal of TNTU (Tern.), vol 98, no 2, pp. 68–79.
DOI: https://doi.org/10.33108/visnyk_tntu2020.02.068
УДК

621.771.014.2

Ключові слова

mathematical modeling, analytical modeling, Steckel mill, steel grade S355JR, hot rolling of coils

The aim of the study is to obtain the stress distribution through the thickness of the rolled products along the deformation zone in the conditions of roughing rolling and in the conditions of quasi-stationary temperature distribution during finishing rolling at the Steckel mill. The research has been performed by the mathematical modeling based on the software application Abaqus CAE 6.14-2 and analytical modeling of the hot rolling process of coils at the Steckel mill with dimensions of 15×1500 mm, made of steel grade S355JR+AR, according to the requirements of EN 10025-2. The obtained deviations of the rolling force between mathematical modeling, analytical modeling and actual data have comparable results and a similar trend of changes through the passes, the average value of which does not exceed 1.54% and -1.77%. The beginning of the continuous layer formation of equivalent stress during roughing rolling has been determined, and, accordingly, the beginning of the deformation penetration through the entire thickness of the semi-rolled product has been also determined that occurs in the pass 6 when deformation equals 14%.

ISSN:2522-4433
Перелік літератури
  1. Kim J., Lee J., Hwang S. M. An analytical model for the prediction of strip temperatures in hot strip rolling. International journal of heat mass transfer, 2009. Vol. 52, pp. 1864–1874.
  2. Kurpe O. H., Kukhar V. V., Klimov E. S., Chernenko S. M. Improvement of Process Parameters Calculation for Coil Rolling at the Steckel Mill. Materials Science and Metallurgical Technology II. Materials Science Forum, 2020. Vol. 989, pp. 609–614.
  3. Kurpe O. H., Kukhar V. V. Development and Optimization of Flat Products Manufacturing at Rolling Mill 3200. Materials Science and Metallurgical Technology. Materials Science Forum, 2018. Vol. 946,
    pp. 794–799.
  4. Yunbo Xu, Yongmei Yu, Xianghua Liu, Guodong Wang. Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels. Journal of University of Science and Technology. Beijing, 2008. Vol. 15, pp. 396–401. DOI: https://doi.org/10.1016/S1005-8850(08)60075-4.
  5. Schausberger F., Steinboeck A., Kugi A. Mathematical modeling of the contour evolution of heavy plates in hot rolling. Applied Mathematical Modelling, 2015. Vol. 39, pp. 4534–4547. DOI: https:// doi.org/10.1016/j.apm.2015.01.017.
  6. Quan-Ke Pan, Qing-da Chen, Tao Meng, Bing Wang, Liang Gao. A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production. Applied Mathematical Modelling, 2017. Vol. 48, pp. 516–533. DOI: https://doi.org/10.1016/j.apm.2017.03.067.
  7. Rudkins N., Evans P. Mathematical modelling of mill set-up in hot strip rolling of high strength steels. Journal of Materials Processing Technology, 1998. Vol. 80–81, pp. 320–324. DOI: https://doi.org/ 10.1016/S0924-0136(98)00190-3.
  8. Andreas Ettl, Katharina Prinz, Martin Mueller, Andreas Steinboeck, Andreas Kugi. Mathematical Model and Stability Analysis of the Lateral Plate Motion in a Reversing Rolling Mill Stand. IFAC-PapersOnLine, 2018. Vol. 51, no. 2, pp. 73–78. DOI: https://doi.org/10.1016/j.ifacol.2018.03.013.
  9. Phaniraj M. P., Behera B. B., Lahiri A. K. Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill Part I. Prediction of rolling loads and finish rolling temperature. Journal of Materials Processing Technology, 2005. Vol. 170, pp. 323–335.
  10. Kukhar V. V., Nikolenko R. S. Issledovanie naprjazhenno-deformirovannogo sostojanija zagotovok pri profilirovanii vypuklymi plitami s jekscentrisitetom nagruzki. Problems of Tribology, 2012. No. 3, pp. 132–136. [In Russian].
  11. Daniel Weisz-Patrault. Coupled heat conduction and multiphase change problem accounting for thermal contact resistance. International Journal of Heat and Mass Transfer, 2017, pp. 595–606. DOI: 10.1016/ j.ijheatmasstransfer.2016.08.091.
  12. Daniel Weisz-Patrault, Alain Ehrlacher, Nicolas Legrand. Temperature and heat flux fast estimation during rolling process. International Journal of Thermal Sciences, 2014, pp. 1–20, DOI: 10.1016/j. ijthermalsci.2013.07.010.
  13. Daniel Weisz-Patrault. Inverse three-dimensional method for fast evaluation of temperature and heat flux fields during rolling process. Symposium on Modelling of Rolling Processes, France, 2012, pp. 20–22.
  14. Kurpe O. H., Kukhar V. V., Zmaznyeva Ye. V. Utochnennya rozrakhunku teplovykh vtrat metalu na stanakh Stekkelya. Problems of Tribology, 2018. No. 1, pp. 78–84. [In Ukraine].
  15. Fedorinov V. A., Satonin A. V., Gribkov Je.P. Matematicheskoe modelirovanie naprjazhenij, deformacij i osnovnyh pokazatelej kachestva pri prokatke otnositel'no shirokih listov i polos. monogr. Kramatorsk: DGMA, 2010, 244 p. [In Russian].
  16. Konovalov Ju. V., Ostapenko A. L., Ponomarev V. I. Raschet parametrov listovoj prokatki. Spravochnik. Moskva: Metallurgija, 1986, 430 p. [In Russian].
References:
  1. Kim J., Lee J., Hwang S. M. An analytical model for the prediction of strip temperatures in hot strip rolling. International journal of heat mass transfer, 2009. Vol. 52, pp. 1864–1874.
  2. Kurpe O. H., Kukhar V. V., Klimov E. S., Chernenko S. M. Improvement of Process Parameters Calculation for Coil Rolling at the Steckel Mill. Materials Science and Metallurgical Technology II. Materials Science Forum, 2020. Vol. 989, pp. 609–614.
  3. Kurpe O. H., Kukhar V. V. Development and Optimization of Flat Products Manufacturing at Rolling Mill 3200. Materials Science and Metallurgical Technology. Materials Science Forum, 2018. Vol. 946,
    pp. 794–799.
  4. Yunbo Xu, Yongmei Yu, Xianghua Liu, Guodong Wang. Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels. Journal of University of Science and Technology. Beijing, 2008. Vol. 15, pp. 396–401. DOI: https://doi.org/10.1016/S1005-8850(08)60075-4.
  5. Schausberger F., Steinboeck A., Kugi A. Mathematical modeling of the contour evolution of heavy plates in hot rolling. Applied Mathematical Modelling, 2015. Vol. 39, pp. 4534–4547. DOI: https:// doi.org/10.1016/j.apm.2015.01.017.
  6. Quan-Ke Pan, Qing-da Chen, Tao Meng, Bing Wang, Liang Gao. A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production. Applied Mathematical Modelling, 2017. Vol. 48, pp. 516–533. DOI: https://doi.org/10.1016/j.apm.2017.03.067.
  7. Rudkins N., Evans P. Mathematical modelling of mill set-up in hot strip rolling of high strength steels. Journal of Materials Processing Technology, 1998. Vol. 80–81, pp. 320–324. DOI: https://doi.org/ 10.1016/S0924-0136(98)00190-3.
  8. Andreas Ettl, Katharina Prinz, Martin Mueller, Andreas Steinboeck, Andreas Kugi. Mathematical Model and Stability Analysis of the Lateral Plate Motion in a Reversing Rolling Mill Stand. IFAC-PapersOnLine, 2018. Vol. 51, no. 2, pp. 73–78. DOI: https://doi.org/10.1016/j.ifacol.2018.03.013.
  9. Phaniraj M. P., Behera B. B., Lahiri A. K. Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill Part I. Prediction of rolling loads and finish rolling temperature. Journal of Materials Processing Technology, 2005. Vol. 170, pp. 323–335.
  10. Kukhar V. V., Nikolenko R. S. Issledovanie naprjazhenno-deformirovannogo sostojanija zagotovok pri profilirovanii vypuklymi plitami s jekscentrisitetom nagruzki. Problems of Tribology, 2012. No. 3, pp. 132–136. [In Russian].
  11. Daniel Weisz-Patrault. Coupled heat conduction and multiphase change problem accounting for thermal contact resistance. International Journal of Heat and Mass Transfer, 2017, pp. 595–606. DOI: 10.1016/ j.ijheatmasstransfer.2016.08.091.
  12. Daniel Weisz-Patrault, Alain Ehrlacher, Nicolas Legrand. Temperature and heat flux fast estimation during rolling process. International Journal of Thermal Sciences, 2014, pp. 1–20, DOI: 10.1016/j. ijthermalsci.2013.07.010.
  13. Daniel Weisz-Patrault. Inverse three-dimensional method for fast evaluation of temperature and heat flux fields during rolling process. Symposium on Modelling of Rolling Processes, France, 2012, pp. 20–22.
  14. Kurpe O. H., Kukhar V. V., Zmaznyeva Ye. V. Utochnennya rozrakhunku teplovykh vtrat metalu na stanakh Stekkelya. Problems of Tribology, 2018. No. 1, pp. 78–84. [In Ukraine].
  15. Fedorinov V. A., Satonin A. V., Gribkov Je.P. Matematicheskoe modelirovanie naprjazhenij, deformacij i osnovnyh pokazatelej kachestva pri prokatke otnositel'no shirokih listov i polos. monogr. Kramatorsk: DGMA, 2010, 244 p. [In Russian].
  16. Konovalov Ju. V., Ostapenko A. L., Ponomarev V. I. Raschet parametrov listovoj prokatki. Spravochnik. Moskva: Metallurgija, 1986, 430 p. [In Russian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.