logo logo


Evaluation of methods for determining abnormalities in cardiovascular system by pulse signal under psycho-emotional stress in dental practice

НазваEvaluation of methods for determining abnormalities in cardiovascular system by pulse signal under psycho-emotional stress in dental practice
Назва англійськоюEvaluation of methods for determining abnormalities in cardiovascular system by pulse signal under psycho-emotional stress in dental practice
АвториYevheniaYavorska; Oksana Strembitska; Mykhailo Strembitskyi; Lilia Hvostivska
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описEvaluation of methods for determining abnormalities in cardiovascular system by pulse signal under psycho-emotional stress in dental practice / Yevhenia Yavorska; Oksana Strembitska; Mykhailo Strembitskyi; Lilia Hvostivska // Scientific Journal of TNTU. — Tern.: TNTU, 2020. — Vol 100. — No 4. — P. 118–126.
Bibliographic description:Yavorska Ye.; Strembitska O.; Strembitskyi M.; Hvostivska L. (2020) Evaluation of methods for determining abnormalities in cardiovascular system by pulse signal under psycho-emotional stress in dental practice. Scientific Journal of TNTU (Tern.), vol 100, no 4, pp. 118–126.
УДК

612.16

Ключові слова

analysis, cardiovascular system, method, psycho-emotional stress, pulse signal.

The purpose of this paper is to compare the existing methods of pulse signal analysis in order to select the best methods for detecting psycho-emotional stress in dental practice. The carried out analysis showed that analytical methods are the most promising for the creation of new and improvement of existing diagnostic equipment, as they contain clear algorithms and have high reproducibility of calculation results.

ISSN:2522-4433
Перелік літератури
  1. Dem'yanenko S. A. Psie'mocional'noe napryazhenie v rozvitii gipertenzivnyx reakcij na stomatologicheskom prieme. Vyatskij medicinskij vestnik. 2014. No. 3–4. P. 53–56. [In Russian].
  2. Vakhnenko O. M. Analiz resursnoho zabezpechennya stomatolohichnoyi sluzhby v Ukrayini. Sovremennaya stomatolohyya. 2011. No. 3. P. 172–176. [In Ukrainian].
  3. Ukl. Bars'ka Yu., eds. Indeks zdorov"ya. Ukrayiny-2019: Rezul'taty zahal'nonatsional'no doslidzhennya. 2020. 103 p. URL: https://www.researchgate.net/publication/339800140_Indeks_zdorov'a_Ukraina_-_2019_Rezultati_zagalnonacionalnogo_doslidzenna. [In Ukrainian].
  4. Nevidkladni stany u stomatolohiyi, shcho zahrozhuyut' zhyttyu. URL: https://navistom.com/blog/ nevidkladni-stani-v-stomatologiyi-shcho-zagrozhuyut-zhittyu-12766.html. [In Ukrainian].
  5. Rasprostronennost' neotlozhnyx sostoyanij v ambulatornoj stomatologicheskoj praktike g. Volgograda. URL: https://files.scienceforum.ru/pdf/2012/1115.pdf. [In Russian].
  6. Mintsera O. P Suchasni metody i zasoby dlya vyznachennya i diahnostuvannya emotsiynoho stresu: monohrafiya. Vinnytsya: VNTU, 2010. 228 p. [In Ukrainian].
  7. Tuan D. Phama, Truong Cong Thang, Mayumi Oyama-Higacd, Masahide Sugiyamae (2013) Mental-disorder detection using chaos and nonlinear dynamical analysis of photoplethysmographic signals. Chaos, Solitons & Fractals. Vol. 51. P. 64–74.
  8. Malinovskij E. L. Uchebno-metodicheskoe posobie po ispol'zovaniyu pal'cevoj fotopletizmografii. URL: http://www.tokranmed.ru/metod/fpg_clinik_1.htm.5. [In Russian].
  9. Markov S. M., Skoryukova S. M. Strukturno-zv"yaznostna model' fotopletyzmohrafichnoho syhnalu. Optyko-elektronni informatsiyno-enerhetychni tekhnolohiyi. 2014. No. 2. P. 41–47. [InUkrainian].
  10. Yue-Der Lin, Ya-Hsueh Chien, Yi-Sheng Chen (2017) Wavelet-based embedded algorithm for respiratory rate estimation from PPG signal. Biomedical Signal Processingand Control. Vol. 36. P. 138–145.
  11. A. Reşit Kavsaoğlu, Kemal Polat, M. Recep Bozkurt (2014) A novel feature ranking algorithm for biometric recognition with PPG signals. Computersin Biology and Medicine. Vol. 49. P. 1–14.
  12. Nina Sviridova, Kenshi Sakaib (2015) Human photoplethysmogram: new insight into chaotic characteristics. Chaos, Solitons & Fractals. Vol. 77. P. 53–63.
  13. P. Ch. Ivanov, L. A. Nunes Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, H. E. Stanley (1999) Multifractality in human heartbeat dynamics. Nature. Vol. 399. P. 461–465.
  14. Dozorska O. (2018) The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific Journal of TNTU (Tern.). Vol. 92. No. 4. P. 126–132.
  15. Nykytyuk V., Dozorskyi V., Dozorska O. (2018) Detection of biomedical signals disruption using a sliding window. Scientific Journal of TNTU (Tern.). Vol. 91. No. 3. P. 125–133.
  16. Issledovanie sosudistoj sistemy. URL: https://en.ppt-online.org/354139. [In Russian].
References:
  1. Dem'yanenko S. A. Psie'mocional'noe napryazhenie v rozvitii gipertenzivnyx reakcij na stomatologicheskom prieme. Vyatskij medicinskij vestnik. 2014. No. 3–4. P. 53–56. [In Russian].
  2. Vakhnenko O. M. Analiz resursnoho zabezpechennya stomatolohichnoyi sluzhby v Ukrayini. Sovremennaya stomatolohyya. 2011. No. 3. P. 172–176. [In Ukrainian].
  3. Ukl. Bars'ka Yu., eds. Indeks zdorov"ya. Ukrayiny-2019: Rezul'taty zahal'nonatsional'no doslidzhennya. 2020. 103 p. URL: https://www.researchgate.net/publication/339800140_Indeks_zdorov'a_Ukraina_-_2019_Rezultati_zagalnonacionalnogo_doslidzenna. [In Ukrainian].
  4. Nevidkladni stany u stomatolohiyi, shcho zahrozhuyut' zhyttyu. URL: https://navistom.com/blog/ nevidkladni-stani-v-stomatologiyi-shcho-zagrozhuyut-zhittyu-12766.html. [In Ukrainian].
  5. Rasprostronennost' neotlozhnyx sostoyanij v ambulatornoj stomatologicheskoj praktike g. Volgograda. URL: https://files.scienceforum.ru/pdf/2012/1115.pdf. [In Russian].
  6. Mintsera O. P Suchasni metody i zasoby dlya vyznachennya i diahnostuvannya emotsiynoho stresu: monohrafiya. Vinnytsya: VNTU, 2010. 228 p. [In Ukrainian].
  7. Tuan D. Phama, Truong Cong Thang, Mayumi Oyama-Higacd, Masahide Sugiyamae (2013) Mental-disorder detection using chaos and nonlinear dynamical analysis of photoplethysmographic signals. Chaos, Solitons & Fractals. Vol. 51. P. 64–74.
  8. Malinovskij E. L. Uchebno-metodicheskoe posobie po ispol'zovaniyu pal'cevoj fotopletizmografii. URL: http://www.tokranmed.ru/metod/fpg_clinik_1.htm.5. [In Russian].
  9. Markov S. M., Skoryukova S. M. Strukturno-zv"yaznostna model' fotopletyzmohrafichnoho syhnalu. Optyko-elektronni informatsiyno-enerhetychni tekhnolohiyi. 2014. No. 2. P. 41–47. [InUkrainian].
  10. Yue-Der Lin, Ya-Hsueh Chien, Yi-Sheng Chen (2017) Wavelet-based embedded algorithm for respiratory rate estimation from PPG signal. Biomedical Signal Processingand Control. Vol. 36. P. 138–145.
  11. A. Reşit Kavsaoğlu, Kemal Polat, M. Recep Bozkurt (2014) A novel feature ranking algorithm for biometric recognition with PPG signals. Computersin Biology and Medicine. Vol. 49. P. 1–14.
  12. Nina Sviridova, Kenshi Sakaib (2015) Human photoplethysmogram: new insight into chaotic characteristics. Chaos, Solitons & Fractals. Vol. 77. P. 53–63.
  13. P. Ch. Ivanov, L. A. Nunes Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, H. E. Stanley (1999) Multifractality in human heartbeat dynamics. Nature. Vol. 399. P. 461–465.
  14. Dozorska O. (2018) The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific Journal of TNTU (Tern.). Vol. 92. No. 4. P. 126–132.
  15. Nykytyuk V., Dozorskyi V., Dozorska O. (2018) Detection of biomedical signals disruption using a sliding window. Scientific Journal of TNTU (Tern.). Vol. 91. No. 3. P. 125–133.
  16. Issledovanie sosudistoj sistemy. URL: https://en.ppt-online.org/354139. [In Russian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.