logo logo


Use of energy-efficient systems for ensuring the microclimate of the premises

НазваUse of energy-efficient systems for ensuring the microclimate of the premises
Назва англійськоюUse of energy-efficient systems for ensuring the microclimate of the premises
АвториHalyna Oliinyk
ПринадлежністьKhmelnytskyi National University, Khmelnytskyi, Ukraine
Бібліографічний описUse of energy-efficient systems for ensuring the microclimate of the premises / Halyna Oliinyk // Scientific Journal of TNTU. — Tern.: TNTU, 2022. — Vol 106. — No 2. — P. 75–82.
Bibliographic description:Oliinyk H. (2022) Use of energy-efficient systems for ensuring the microclimate of the premises. Scientific Journal of TNTU (Tern.), vol 106, no 2, pp. 75–82.
DOI: https://doi.org/10.33108/visnyk_tntu2022.02.075
УДК

621.577.6:697

Ключові слова

heat pump units, ventilation, WLHP system, energy saving, energy efficiency, thermal power, microclimate, СОР, circuit.

The article considers the use of the WLHP system, which is an alternative to already existing heating systems. It allows you to streamline engineering networks and implement energy-saving measures in the heat consumption sector. The advantages of the system are noted and the use of a heat pump in the system is recommended for the disposal of excess heat in the premises in order to reduce heat consumption. Measures related to energy-efficient technologies in Poland, Germany, and Sweden, including the use of heat pumps, were considered. The information regarding of the measurements СОР of energy-saving equipment implemented in Ukraine, in accordance with current standards, with the aim of improving the quality characteristics of the equipment present in the WLHP system, was introduced. The advantages of such a solution in comparison with traditional systems for ensuring the microclimate of premises are noted.

 

ISSN:2522-4433
Перелік літератури
  1. Basok B. I., Nedbailo O. M., Tutova O. V., Tkachenko M. V., Bozhko I. K. Analysis of the energy efficiency of the complex modernization of a typical radiator heating system of a building based on the autonomous use of an “air-water” type heat pump. ScienceRise. 2018. No. 9. P. 43–48.
  2. Heat Pumps. URL: https://www.iea.org/reports/heat-pumps. Access Date: 11.03.2021.
  3. Jiang X. S., Jing Z. X., Li Y. Z., Wu Q. H., Tang W. H. Modeling and operation optimization of an integrated energy-based direct district water-heating system. Energy. 2020. Vol. 64. P. 375–388.
  4. Dzhezhula V. V., Yepifanova I. Yu. Energy conservation as a direction to improve the safety of critical systems of residential buildings. Bulletin of the Khmelnytskyi National University. 2022. No. 2. Vol. 1. P. 72–76.
  5. Verda V., Borchiellini R., Calì M. A thermoeconomic approach for the analysis of district heating systems. The International Journal of Applied Thermodynamics. 2021. Vol. 4. No. 4. P. 183–190.
  6. LG Electronics. Total HVAC solution provider. Engineering product data book. Therma V. P. No.: MFL66101118, Seoul, Korea, 2020.
  7. Kozlov S. A. Energy conservation in heat supply systems. Tyazheloe Mashinostroenie. 2022. No. 1. P. 36–37.
  8. Verda V., Baccino G., Sciacovelli A., Lo Russo S. Impact of district heating and groundwater heat pump systems on the primary energy needs in urban areas. Applied Thermal Engineering. Elsevier. 2021. Vol. 9. P. 18–26.
  9. Chen C. M., Zhang Y. F., Ma L. J. Assessment for Central Heating Systems with Different Heat Sources: A Case Study. Energy and Buildings. 2020. Vol. 48. P. 168–174.
  10. Basok B. I., Dubovsky S. V. Consolidated assessment of heat capacity and volumes of renewable energy production by heat pumps in Ukraine. Heat pumps in Ukraine. 2019. No. 1. P. 2–6.
  11. Bezrodny M. K., Prytula N. O., Misyura T. O. Analysis of the effectiveness of a heat pump heating scheme using the heat of atmospheric air and solar energy. Energy: economy, technologies, ecology. 2017. No. 4. P. 47–57.
  12. Bugai V. S., Liberman S. L. Technical and economic analysis of thermal energy release modes for heating from a hybrid heat source “boiler-heat pump”. Scientific bulletin of construction. 2017. Vol. 88. No. 2. P. 207–212.
  13. Heat pumps in Germany. How the Germans influenced the heat pump market at the legislative level. URL: https://freenergy.com.ua/teplovi-nasosi-v-nimechchyni/ (date of application: 04/13/2022).
  14. Heat pumps in Sweden. A Swedish success story. URL: https://freenergy.com.ua/teplovi-nasosy-v-shvecii/ (date of application: 04/13/2022).
  15. Heat pumps in Poland. A dynamically growing market. URL: https://freenergy.com.ua/teplovi-nasosy-v-polshchi/ (date of application: 04/12/2022).
  16. Zlateva P., Yordanov K. Experimental study of heat pump type air-water for heating system performance. E3S Web Conf. TE-RE-RD. Vol. 112. 2019. DOI: 10.1051/e3sconf/201911201007.
  17. Xinhui Zhao, Enshen Long, Yin Zhang, Qinjian Liu, Zhenghao Jin, Fei Liang Experimental Study on Heating Performance of Air - source Heat Pump with Water Tank for Thermal Energy Storage. Procedia Engineering 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC 2017, 19-22 October 2017, Jinan, China. 2017. Vol. 205. P. 3027–3034. DOI: 10.1016/j.proeng.2017.10.087.
  18.  Shu, H. W. Lin D. M., Li X. L., Zhu Y. X. Energy-Saving Judgment of Electric-Driven Seawater Source Heat Pump District Heating System over Boiler House District Heating System. Energy and Buildings. 2020. Vol. 42. No. 6. P. 889–895.
  19.  Verda V., Guelpa E., Kona F., Lo Russo S. Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations. Energy. 2020. No. 48 (1). P. 40–46.
  20.  Jezhula V. V. Management of alternative energy sources in the system of innovative development of enterprises. Process and socially competent management of innovative development of business systems: monograph; for the science. ed. O. M. Polinkevich. Lutsk: Vezha-Druk, 2017. Chap. 5.1. P. 146–155.
  21.  Kulinko E. O., Kuzytskyi I. T., Pogosov O. G. Heat pumps as sources of low-temperature heat supply. Energy-efficiency in civil engineering and architecture. 2017. No. 9. P. 132–136.
  22.  SOR heat pump. URL: https://freenergy.com.ua/cop-teplovogo-nasosy/ (date of application: 04/14/2022).
  23.  Hepbaslia A., Balta M. T. A study on modeling and performance assessment of a heat pump system for utilizing low temperature geothermal resources in buildings. 2021. Vol. 42. P. 3747–3756.
References:
  1. Basok B. I., Nedbailo O. M., Tutova O. V., Tkachenko M. V., Bozhko I. K. Analysis of the energy efficiency of the complex modernization of a typical radiator heating system of a building based on the autonomous use of an “air-water” type heat pump. ScienceRise. 2018. No. 9. P. 43–48.
  2. Heat Pumps. URL: https://www.iea.org/reports/heat-pumps. Access Date: 11.03.2021.
  3. Jiang X. S., Jing Z. X., Li Y. Z., Wu Q. H., Tang W. H. Modeling and operation optimization of an integrated energy-based direct district water-heating system. Energy. 2020. Vol. 64. P. 375–388.
  4. Dzhezhula V. V., Yepifanova I. Yu. Energy conservation as a direction to improve the safety of critical systems of residential buildings. Bulletin of the Khmelnytskyi National University. 2022. No. 2. Vol. 1. P. 72–76.
  5. Verda V., Borchiellini R., Calì M. A thermoeconomic approach for the analysis of district heating systems. The International Journal of Applied Thermodynamics. 2021. Vol. 4. No. 4. P. 183–190.
  6. LG Electronics. Total HVAC solution provider. Engineering product data book. Therma V. P. No.: MFL66101118, Seoul, Korea, 2020.
  7. Kozlov S. A. Energy conservation in heat supply systems. Tyazheloe Mashinostroenie. 2022. No. 1. P. 36–37.
  8. Verda V., Baccino G., Sciacovelli A., Lo Russo S. Impact of district heating and groundwater heat pump systems on the primary energy needs in urban areas. Applied Thermal Engineering. Elsevier. 2021. Vol. 9. P. 18–26.
  9. Chen C. M., Zhang Y. F., Ma L. J. Assessment for Central Heating Systems with Different Heat Sources: A Case Study. Energy and Buildings. 2020. Vol. 48. P. 168–174.
  10. Basok B. I., Dubovsky S. V. Consolidated assessment of heat capacity and volumes of renewable energy production by heat pumps in Ukraine. Heat pumps in Ukraine. 2019. No. 1. P. 2–6.
  11. Bezrodny M. K., Prytula N. O., Misyura T. O. Analysis of the effectiveness of a heat pump heating scheme using the heat of atmospheric air and solar energy. Energy: economy, technologies, ecology. 2017. No. 4. P. 47–57.
  12. Bugai V. S., Liberman S. L. Technical and economic analysis of thermal energy release modes for heating from a hybrid heat source “boiler-heat pump”. Scientific bulletin of construction. 2017. Vol. 88. No. 2. P. 207–212.
  13. Heat pumps in Germany. How the Germans influenced the heat pump market at the legislative level. URL: https://freenergy.com.ua/teplovi-nasosi-v-nimechchyni/ (date of application: 04/13/2022).
  14. Heat pumps in Sweden. A Swedish success story. URL: https://freenergy.com.ua/teplovi-nasosy-v-shvecii/ (date of application: 04/13/2022).
  15. Heat pumps in Poland. A dynamically growing market. URL: https://freenergy.com.ua/teplovi-nasosy-v-polshchi/ (date of application: 04/12/2022).
  16. Zlateva P., Yordanov K. Experimental study of heat pump type air-water for heating system performance. E3S Web Conf. TE-RE-RD. Vol. 112. 2019. DOI: 10.1051/e3sconf/201911201007.
  17. Xinhui Zhao, Enshen Long, Yin Zhang, Qinjian Liu, Zhenghao Jin, Fei Liang Experimental Study on Heating Performance of Air - source Heat Pump with Water Tank for Thermal Energy Storage. Procedia Engineering 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC 2017, 19-22 October 2017, Jinan, China. 2017. Vol. 205. P. 3027–3034. DOI: 10.1016/j.proeng.2017.10.087.
  18.  Shu, H. W. Lin D. M., Li X. L., Zhu Y. X. Energy-Saving Judgment of Electric-Driven Seawater Source Heat Pump District Heating System over Boiler House District Heating System. Energy and Buildings. 2020. Vol. 42. No. 6. P. 889–895.
  19.  Verda V., Guelpa E., Kona F., Lo Russo S. Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations. Energy. 2020. No. 48 (1). P. 40–46.
  20.  Jezhula V. V. Management of alternative energy sources in the system of innovative development of enterprises. Process and socially competent management of innovative development of business systems: monograph; for the science. ed. O. M. Polinkevich. Lutsk: Vezha-Druk, 2017. Chap. 5.1. P. 146–155.
  21.  Kulinko E. O., Kuzytskyi I. T., Pogosov O. G. Heat pumps as sources of low-temperature heat supply. Energy-efficiency in civil engineering and architecture. 2017. No. 9. P. 132–136.
  22.  SOR heat pump. URL: https://freenergy.com.ua/cop-teplovogo-nasosy/ (date of application: 04/14/2022).
  23.  Hepbaslia A., Balta M. T. A study on modeling and performance assessment of a heat pump system for utilizing low temperature geothermal resources in buildings. 2021. Vol. 42. P. 3747–3756.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.