logo logo


Study of the efficiency of using a heat pump in the heat supply system of a private house

НазваStudy of the efficiency of using a heat pump in the heat supply system of a private house
Назва англійськоюStudy of the efficiency of using a heat pump in the heat supply system of a private house
АвториHalyna Oliinyk
ПринадлежністьKhmelnytskyi National University, Khmelnytskyi, Ukraine
Бібліографічний описStudy of the efficiency of using a heat pump in the heat supply system of a private house / Halyna Oliinyk // Scientific Journal of TNTU. — Tern.: TNTU, 2022. — Vol 107. — No 3. — P. 14–20.
Bibliographic description:Oliinyk H. (2022) Study of the efficiency of using a heat pump in the heat supply system of a private house. Scientific Journal of TNTU (Tern.), vol 107, no 3, pp. 14–20.
DOI: https://doi.org/10.33108/visnyk_tntu2022.03.014
УДК

621.57

Ключові слова

heat pump, energy saving, coolant, air conditioning, hot water supply, energy efficiency, thermal performance, power consumption, split system.

Currently, air-to-water heat pumps are in high demand, which, thanks to the high coefficient of heat conversion, reduce energy consumption and negative impact on the environment. The advantages of using a heat pump are safety, environmental friendliness, economy, and the fact that when using it, dependence on rising prices for natural energy sources is reduced. One of the main problems of the air-to-water heat pump is a decrease in productivity when the outside air temperature drops in winter. This paper analyzed the efficiency of air-to-water heat pump Mitsubishi Electric PUHZ-SHW230YKAR1 for providing a private house with heating, hot water supply and air conditioning. On the basis of the obtained results, graphs of the efficiency of the heat pump were constructed depending on the temperature of the environment and the coolant. The installation is able to generate heat at an external temperature of minus 28°C. The maximum heating temperature of the coolant is 60°C.

ISSN:2522-4433
Перелік літератури
  1. Basok B. I., Nedbaylo O. M., Tutova O. V., Tkachenko M. V., Bozhko I. K. Analysis of the energy efficiency of the complex modernization of a typical radiator system of heat supply of a building based on the autonomous use of an air-water heat pump. ScienceRise. 2018. No. 9. P. 43–48.
  2. Heat Pumps [Electronic Resource]. IEA. Access Mode. URL: https://www.iea.org/reports/heat-pumps. Access Date: 11.03.2021.
  3. Basok B. I., Dubovsky S. V. Consolidated assessment of heat capacity and volumes of renewable energy production by heat pumps in Ukraine. Heat pumps in Ukraine, 2019. No. 1. P. 2–6.
  4. Bezrodny M. K., Prytula N. O., Misyura T. O. Analysis of the effectiveness of a heat pump heating scheme using the heat of atmospheric air and solar energy. Energy: economics, technologies, ecology, 2017. No. 4. P. 47–57.
  5. Bugai V.S., Liberman S.L. Technical and economic analysis of thermal energy release modes for heating from a hybrid heat source “boiler-heat pump”. Scientific Bulletin of Construction, 2017. Vol. 88, No. 2. P. 207–212.
  6. LG Electronics. Total HVAC solution provider. Engineering product data book. Therma V. P/No.: MFL66101118. Seoul. Korea, 2020.
  7. Zlateva P., Yordanov K. Experimental study of heat pump type air-water for heating system performance. E3S Web Conf. TE-RE-RD. Vol. 112, 2019 DOI: 10.1051/e3sconf/201911201007
  8. Surface meteorology and Solar Energy. URL: http://eosweb.larc.nasa.gov/sse/RETScreen/ (Access Date 23.03.2022 р.)
  9. Xinhui Zhao, Enshen Long, Yin Zhang, Qinjian Liu, Zhenghao Jin, Fei Liang. Experimental Study on Heating Performance of Air – source Heat Pump with Water Tank for Thermal Energy Storage. Procedia Engineering 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC 2017, 19–22 October 2017, Jinan, China, 2017. Vol. 205. P. 3027–3034. DOI: 10.1016/ j.proeng.2017.10.087.
  10. Yau J., JianWei J., Wang H., Eniola O., Ibitoye F.P. Dynamic modeling of temperature and humidity for greenhouse using matlab-simulink environment. Journal of Scientific and Engineering Research, 2020.
  11. Morato M.M. et al., Model predictive control design for linear parameter varying systems: A survey. Ann. Rev. Control. Vol. 49. 2020. P. 64–80.
  12. Jezhula V. V. Management of alternative energy sources in the system of innovative development of enterprises. Process and socially competent management of innovative development of business systems: monograph; for the science. ed. O. M. Polinkevich. Lutsk: Vezha-Druk, 2017. Chap. 5.1. P. 146–155.
  13. Dzhedzhula V. V., Yepifanova I. Yu. Energy conservation as a direction of increasing the safety of critical systems of residential buildings. Bulletin of the Khmelnytskyi National University, 2022. No. 2. T. 1. P. 72–76.
  14. Kulinko E. O., Kuzytskyi I. T., Pogosov O. G. Heat pumps as sources of low-temperature heat supply. Energy-efficiency in civil engineering and architecture, 2017. No. 9. P. 132–136.
  15. Stepanets O. Mariiash Y. Model Predictive Control Toolbox Design for Nonstationary Process. KPI Science News, 2021. P. 4249.
  16. Dounis A. I., Caraiscos C. Advanced control system engineering for energy and comfort management in a building environment: A review. Renew. Sust. Energ. Rev. No. 13 (7), 2009. Р. 12461261.
  17. Bagan T. G., Bun V. P., Bezugliy R. O. Adaptive microclimate control system based on a heat
    pump. Scientific notes of TNU named after V. I. Vernadskyi. Technical sciences. 2022. No. 1.
    P. 66–73.
  18. Maria Pinamonti, Ian Beausoleil Morrison, Alessandro Prada, Paolo Baggio. Solar Energy, Water-to-water heat pump integration in a solar seasonal storage system for space heating and domestic
    hot water production of a single-family house in a cold climate. Volume 213. 1 January 2021.
    P. 300–311.
  19. Ye. Yerdesh, Z. Abdulinab, A. Aliulyac, Ye. Belyayevac, M. Mohanrajd, A. Kaltayevac. Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates. Renewable Energy. Volume 145. January 2020. P. 1222–1234.
  20. Zlateva P., Yordanov K. Experimental study of heat pump type air-water for heating system performance. E3S Web Conf. TE-RE-RD. Vol. 112. 2019. DOI: 10.1051/e3sconf/201911201007.
  21. Xinhui Zhao, Enshen Long, Yin Zhang, Qinjian Liu, Zhenghao Jin, Fei Liang. Experimental Study on Heating Performance of Air – source Heat Pump with Water Tank for Thermal Energy Storage. Procedia Engineering 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC 2017, 19–22 October 2017. Jinan. China. 2017. Vol. 205. P. 3027–3034. DOI: 10.1016/j.proeng.2017.10.087.
  22. Shu H. W., Lin D. M., Li X. L., Zhu Y. X. Energy-Saving Judgment of Electric-Driven Seawater Source Heat Pump District Heating System over Boiler House District Heating System. Energy and Buildings, 2020. Vol. 42. No. 6. P. 889–895.
  23. Verda V., Guelpa E., Kona F., Lo Russo S. Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations. Energy. 2020.No. 48 (1). P. 40–46.
References:
  1. Basok B. I., Nedbaylo O. M., Tutova O. V., Tkachenko M. V., Bozhko I. K. Analysis of the energy efficiency of the complex modernization of a typical radiator system of heat supply of a building based on the autonomous use of an air-water heat pump. ScienceRise. 2018. No. 9. P. 43–48.
  2. Heat Pumps [Electronic Resource]. IEA. Access Mode. URL: https://www.iea.org/reports/heat-pumps. Access Date: 11.03.2021.
  3. Basok B. I., Dubovsky S. V. Consolidated assessment of heat capacity and volumes of renewable energy production by heat pumps in Ukraine. Heat pumps in Ukraine, 2019. No. 1. P. 2–6.
  4. Bezrodny M. K., Prytula N. O., Misyura T. O. Analysis of the effectiveness of a heat pump heating scheme using the heat of atmospheric air and solar energy. Energy: economics, technologies, ecology, 2017. No. 4. P. 47–57.
  5. Bugai V.S., Liberman S.L. Technical and economic analysis of thermal energy release modes for heating from a hybrid heat source “boiler-heat pump”. Scientific Bulletin of Construction, 2017. Vol. 88, No. 2. P. 207–212.
  6. LG Electronics. Total HVAC solution provider. Engineering product data book. Therma V. P/No.: MFL66101118. Seoul. Korea, 2020.
  7. Zlateva P., Yordanov K. Experimental study of heat pump type air-water for heating system performance. E3S Web Conf. TE-RE-RD. Vol. 112, 2019 DOI: 10.1051/e3sconf/201911201007
  8. Surface meteorology and Solar Energy. URL: http://eosweb.larc.nasa.gov/sse/RETScreen/ (Access Date 23.03.2022 р.)
  9. Xinhui Zhao, Enshen Long, Yin Zhang, Qinjian Liu, Zhenghao Jin, Fei Liang. Experimental Study on Heating Performance of Air – source Heat Pump with Water Tank for Thermal Energy Storage. Procedia Engineering 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC 2017, 19–22 October 2017, Jinan, China, 2017. Vol. 205. P. 3027–3034. DOI: 10.1016/ j.proeng.2017.10.087.
  10. Yau J., JianWei J., Wang H., Eniola O., Ibitoye F.P. Dynamic modeling of temperature and humidity for greenhouse using matlab-simulink environment. Journal of Scientific and Engineering Research, 2020.
  11. Morato M.M. et al., Model predictive control design for linear parameter varying systems: A survey. Ann. Rev. Control. Vol. 49. 2020. P. 64–80.
  12. Jezhula V. V. Management of alternative energy sources in the system of innovative development of enterprises. Process and socially competent management of innovative development of business systems: monograph; for the science. ed. O. M. Polinkevich. Lutsk: Vezha-Druk, 2017. Chap. 5.1. P. 146–155.
  13. Dzhedzhula V. V., Yepifanova I. Yu. Energy conservation as a direction of increasing the safety of critical systems of residential buildings. Bulletin of the Khmelnytskyi National University, 2022. No. 2. T. 1. P. 72–76.
  14. Kulinko E. O., Kuzytskyi I. T., Pogosov O. G. Heat pumps as sources of low-temperature heat supply. Energy-efficiency in civil engineering and architecture, 2017. No. 9. P. 132–136.
  15. Stepanets O. Mariiash Y. Model Predictive Control Toolbox Design for Nonstationary Process. KPI Science News, 2021. P. 4249.
  16. Dounis A. I., Caraiscos C. Advanced control system engineering for energy and comfort management in a building environment: A review. Renew. Sust. Energ. Rev. No. 13 (7), 2009. Р. 12461261.
  17. Bagan T. G., Bun V. P., Bezugliy R. O. Adaptive microclimate control system based on a heat
    pump. Scientific notes of TNU named after V. I. Vernadskyi. Technical sciences. 2022. No. 1.
    P. 66–73.
  18. Maria Pinamonti, Ian Beausoleil Morrison, Alessandro Prada, Paolo Baggio. Solar Energy, Water-to-water heat pump integration in a solar seasonal storage system for space heating and domestic
    hot water production of a single-family house in a cold climate. Volume 213. 1 January 2021.
    P. 300–311.
  19. Ye. Yerdesh, Z. Abdulinab, A. Aliulyac, Ye. Belyayevac, M. Mohanrajd, A. Kaltayevac. Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates. Renewable Energy. Volume 145. January 2020. P. 1222–1234.
  20. Zlateva P., Yordanov K. Experimental study of heat pump type air-water for heating system performance. E3S Web Conf. TE-RE-RD. Vol. 112. 2019. DOI: 10.1051/e3sconf/201911201007.
  21. Xinhui Zhao, Enshen Long, Yin Zhang, Qinjian Liu, Zhenghao Jin, Fei Liang. Experimental Study on Heating Performance of Air – source Heat Pump with Water Tank for Thermal Energy Storage. Procedia Engineering 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC 2017, 19–22 October 2017. Jinan. China. 2017. Vol. 205. P. 3027–3034. DOI: 10.1016/j.proeng.2017.10.087.
  22. Shu H. W., Lin D. M., Li X. L., Zhu Y. X. Energy-Saving Judgment of Electric-Driven Seawater Source Heat Pump District Heating System over Boiler House District Heating System. Energy and Buildings, 2020. Vol. 42. No. 6. P. 889–895.
  23. Verda V., Guelpa E., Kona F., Lo Russo S. Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations. Energy. 2020.No. 48 (1). P. 40–46.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.