logo logo


Methodology and some results of studying the influence of frequency on functional properties of pseudoelastic SMA

НазваMethodology and some results of studying the influence of frequency on functional properties of pseudoelastic SMA
Назва англійськоюMethodology and some results of studying the influence of frequency on functional properties of pseudoelastic SMA
АвториVolodymyr Iasnii, Nazarii Bykiv, Oleh Yasniy, Volodymyr Budz
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описMethodology and some results of studying the influence of frequency on functional properties of pseudoelastic SMA / Volodymyr Iasnii, Nazarii Bykiv, Oleh Yasniy, Volodymyr Budz // Scientific Journal of TNTU. — Tern.: TNTU, 2022. — Vol 107. — No 3. — P. 45–50.
Bibliographic description:Iasnii V., Bykiv N., Yasniy O., Budz V. (2022) Methodology and some results of studying the influence of frequency on functional properties of pseudoelastic SMA. Scientific Journal of TNTU (Tern.), vol 107, no 3, pp. 45–50.
DOI: https://doi.org/10.33108/visnyk_tntu2022.03.045
УДК

539.3

Ключові слова

pseudoelastic NiTi wire, cyclic loading, frequency, functional properties.

The mechanical loading frequency affects the functional properties of shape memory alloys (SMA). Thus, it is necessary to study the effect of frequency in order to use successfully these materials in real structures. Based on the pseudoelastic cyclic behavior, the experimental methodology that allows testing of  NiTi wires in stress controlled mode is proposed. Cyclic tensile tests are carried out using universal testing machine STM-100 at room temperature with loading frequencies of 0.1 Hz and 10 Hz. The functional dependencies are determined based on the experimentally obtained hysteresis loops. These functional dependencies comprise dissipated energy and damping factor. It iis found that the increase of loading frequency results in the worsening of functional properties, namely, to the decrease of dissipated energy and damping factor. This is caused by the fact that the regions of austenitic and martensitic transformation under the high loading frequency are absent. That is, the transformation of austenite into martensite does not occur, that stands for the pseudoelasticity effect. Nevertheless, it should be noted that the increase of loading frequency in 100 times augments the lifetime of pseudoelastic wire made of NiTi alloy roughly by 30%. It is determined that the increase of loading frequency results in the decrease of maximum strain in two times in the first loading cycle, and practically in 5 times after 200 cycles of loading.

ISSN:2522-4433
Перелік літератури

1.   Yasniy P. et al. Calculation of constructive parameters of SMA damper. Sci J TNTU. 2017. Vol. 88. No. 4. P. 7–15.
2.   Iasnii V., Sobaszek L., Yasniy P. Study of cyclic response of SMA based damping device. Procedia Struct Integr. Elsevier BV. 2022. Vol. 36. P. 284–289.
3.   Teh Y. H., Featherstone R. Frequency response analysis of shape memory alloy actuators. Int Conf Smart Mater Nanotechnol Eng. 2007. Vol. 6423. July. P. 64232J.
4.   Bernardini D., Rega G. Evaluation of different SMA models performances in the nonlinear dynamics of pseudoelastic oscillators via a comprehensive modeling framework. Int J Mech Sci. Pergamon, 2017.Vol. 130. P. 458–475.
5.   Huang Y. et al. Modal Performance of Two-Fiber Orthogonal Gradient Composite Laminates Embedded with SMA. Materials (Basel). Multidisciplinary Digital Publishing Institute (MDPI). 2020. Vol. 13. No. 5.
6.   Botshekanan Dehkordi M., Khalili S. M. R. Frequency analysis of sandwich plate with active SMA hybrid composite face-sheets and temperature dependent flexible core. Compos Struct. Elsevier. 2015. Vol. 123. P. 408–419.
7.   De Souza E.F. et al. Critical Frequency of Self-Heating in a Superelastic Ni-Ti Belleville Spring: Experimental Characterization and Numerical Simulation. Sensors (Basel). Sensors (Basel). 2021. Vol. 21. No. 21.
8.   Iasnii V., Junga R. Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Mater Sci. 2018. Vol. 54. No. 3. P. 406–411.

References:

1.   Yasniy P. et al. Calculation of constructive parameters of SMA damper. Sci J TNTU. 2017. Vol. 88. No. 4. P. 7–15.
2.   Iasnii V., Sobaszek L., Yasniy P. Study of cyclic response of SMA based damping device. Procedia Struct Integr. Elsevier BV. 2022. Vol. 36. P. 284–289.
3.   Teh Y. H., Featherstone R. Frequency response analysis of shape memory alloy actuators. Int Conf Smart Mater Nanotechnol Eng. 2007. Vol. 6423. July. P. 64232J.
4.   Bernardini D., Rega G. Evaluation of different SMA models performances in the nonlinear dynamics of pseudoelastic oscillators via a comprehensive modeling framework. Int J Mech Sci. Pergamon, 2017.Vol. 130. P. 458–475.
5.   Huang Y. et al. Modal Performance of Two-Fiber Orthogonal Gradient Composite Laminates Embedded with SMA. Materials (Basel). Multidisciplinary Digital Publishing Institute (MDPI). 2020. Vol. 13. No. 5.
6.   Botshekanan Dehkordi M., Khalili S. M. R. Frequency analysis of sandwich plate with active SMA hybrid composite face-sheets and temperature dependent flexible core. Compos Struct. Elsevier. 2015. Vol. 123. P. 408–419.
7.   De Souza E.F. et al. Critical Frequency of Self-Heating in a Superelastic Ni-Ti Belleville Spring: Experimental Characterization and Numerical Simulation. Sensors (Basel). Sensors (Basel). 2021. Vol. 21. No. 21.
8.   Iasnii V., Junga R. Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Mater Sci. 2018. Vol. 54. No. 3. P. 406–411.

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.