logo logo


Method of calibration mems accelerometer and magnetometer for increasing the accuracy determination angular orientation of satellite antenna reflector

НазваMethod of calibration mems accelerometer and magnetometer for increasing the accuracy determination angular orientation of satellite antenna reflector
Назва англійськоюMethod of calibration mems accelerometer and magnetometer for increasing the accuracy determination angular orientation of satellite antenna reflector
АвториMykhaylo Palamar, Taras Horyn, Andriy Palamar,Vitaliy Batuk
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описMethod of calibration mems accelerometer and magnetometer for increasing the accuracy determination angular orientation of satellite antenna reflector / Mykhaylo Palamar, Taras Horyn, Andriy Palamar,Vitaliy Batuk // Scientific Journal of TNTU. — Tern.: TNTU, 2022. — Vol 108. — No 4. — P. 79–88.
Bibliographic description:Palamar M., Horyn T., Palamar A., Batuk V. (2022) Method of calibration mems accelerometer and magnetometer for increasing the accuracy determination angular orientation of satellite antenna reflector. Scientific Journal of TNTU (Tern.), vol 108, no 4, pp. 79–88.
УДК

681.2

Ключові слова

MEMS, angle sensor, encoder, calibration, support-rotary platform, control system, antenna system.

The paper is devoted to the measurement errors investigation that arise due to the influence of MEMS accelerometers' nonlinear characteristics. They appear at large inclination angles of the antenna system support-rotary platform, as well as in the presence of a magnetic inclination, which is due to the peculiarity of the Earth's magnetic field for the magnetometer. The study was conducted to assess the possibility of using such devices to increase the accuracy of a satellite antenna control with a classic rotary platform. The experimental setup for researching the parameters of MEMS sensors allows comparison of measurement results with data obtained from precision optical encoder. The experimental results show the main sources of MEMS sensors errors. An accuracy increasing method of antenna system angular position determining using a triaxial accelerometer and a magnetometer is proposed. The main advantage of the proposed estimation vector determining approach using the least squares method is the possibility of carrying out the calibration procedure without reference to the coordinate system. The method makes it possible to get rid of the zero offset error, as well as compensate for the non-unit scale of the sensor axes and the error of the magnetometer angular orientation. This method can be used for many applications including robotics, design of unmanned aerial vehicles and many other technical systems. The proposed method makes it possible to increase the reliability and reduce the cost of such systems.

ISSN:2522-4433
Перелік літератури
  1. Kovryzhkin O. H., Melnykovych V. B., Horin I. Ia. Vykorystannia mahnitometriv dlia vyznachennia kutovoi oriientatsii bezpilotnoho litalnoho aparata. Naukoiemni tekhnolohii. Vol. 4. No. 4. 2009. P. 39–42. [In Ukrainian].
  2. Ru X., Gu N., Shang H., Zhang H. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends. Micromachines. 2022. Vol. 13. No. 6. P. 879–906.
  3. Palamar M., Malovanyi P., Palamar Ya. Pidvyshchennia tochnosti vymiriuvannia nakhylu oporno-povorotnoi platformy antennoi systemy za dopomohoiu MEMS akselerometra. Visnyk TNTU. Ternopil: TNTU. 2015. Vol. 78. No. 2. P. 164–170. [In Ukrainian].
  4. Yang J., Wu W., Wu Y., Lian J. An iterative calibration method for nonlinear coefficients of marine triaxial accelerometers. Journal of Central South University. 2013. 20 (11). P. 3103–3115.
  5. Liu Y. X., Li X. S., Zhang X. J., Feng Y. B. Novel calibration algorithm for a three-axis strapdown magnetometer. Sensors. 14 (5). 2014. P. 8485–8504.
  6. Lee C. Sensor as a solution: recent progress in intelligent sensors development. In 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). 2019. P. 256–256.
  7. Palamar M., Chaikovskyi A. Rozrobka ta metrolohichnyi analiz pretsyziinoho datchyka kuta dlia antennykh system. Visnyk TDTU. 2008. Vol. 13. No. 4. P. 158–165. [In Ukrainian].
  8. Rao K., Liu H., Wei X., Wu W., Hu C., Fan J., Tu L.C. A High-resolution area-change-based capacitive MEMS accelerometer for tilt sensing. In 2020 IEEE International Symposium on Inertial Sensors and Systems. 2020. P. 1–4.
  9. Wang F., Cao J., Wu M., Guo Y. Accelerometer calibration optimal design based on high-precision three-axis turntable. In 2016 IEEE International Conference on Information and Automation (ICIA). 2016. P. 2028–2032.
  10. Wang P., Gao Y., Wu M., Zhang F., Li G. In-field calibration of triaxial accelerometer based on beetle swarm antenna search algorithm. Sensors. 2020. Vol. 20. No. 3. P. 947–967.
  11. Cui X., Li Y., Wang Q., Zhang M., Li J. Three-axis magnetometer calibration based on optimal ellipsoidal fitting under constraint condition for pedestrian positioning system using foot-mounted inertial sensor/magnetometer. In 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). 2018. P. 166–174.
  12. Palamar A. Control system simulation by modular uninterruptible power supply unit with adaptive regulation function. Scientific Journal of TNTU. 2020. Vol. 98. No. 2. P. 129–136.
  13. Palamar A. Methods and means of increasing the reliability of computerized modular uninterruptible power supply system. Scientific Journal of TNTU. 2020. Vol. 99. No. 3. P. 133–141.
  14. Palamar M., Pasternak Y., Palamar A., Poikhalo A. Precision tracking of the trajectory LEO satellite by antenna with induction motors in the control system. Proceedings of the 2017 IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS 2017), Bucharest, Romania. 2017. Vol. 2. P. 1051–1055.
References:
  1. Kovryzhkin O. H., Melnykovych V. B., Horin I. Ia. Vykorystannia mahnitometriv dlia vyznachennia kutovoi oriientatsii bezpilotnoho litalnoho aparata. Naukoiemni tekhnolohii. Vol. 4. No. 4. 2009. P. 39–42. [In Ukrainian].
  2. Ru X., Gu N., Shang H., Zhang H. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends. Micromachines. 2022. Vol. 13. No. 6. P. 879–906.
  3. Palamar M., Malovanyi P., Palamar Ya. Pidvyshchennia tochnosti vymiriuvannia nakhylu oporno-povorotnoi platformy antennoi systemy za dopomohoiu MEMS akselerometra. Visnyk TNTU. Ternopil: TNTU. 2015. Vol. 78. No. 2. P. 164–170. [In Ukrainian].
  4. Yang J., Wu W., Wu Y., Lian J. An iterative calibration method for nonlinear coefficients of marine triaxial accelerometers. Journal of Central South University. 2013. 20 (11). P. 3103–3115.
  5. Liu Y. X., Li X. S., Zhang X. J., Feng Y. B. Novel calibration algorithm for a three-axis strapdown magnetometer. Sensors. 14 (5). 2014. P. 8485–8504.
  6. Lee C. Sensor as a solution: recent progress in intelligent sensors development. In 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). 2019. P. 256–256.
  7. Palamar M., Chaikovskyi A. Rozrobka ta metrolohichnyi analiz pretsyziinoho datchyka kuta dlia antennykh system. Visnyk TDTU. 2008. Vol. 13. No. 4. P. 158–165. [In Ukrainian].
  8. Rao K., Liu H., Wei X., Wu W., Hu C., Fan J., Tu L.C. A High-resolution area-change-based capacitive MEMS accelerometer for tilt sensing. In 2020 IEEE International Symposium on Inertial Sensors and Systems. 2020. P. 1–4.
  9. Wang F., Cao J., Wu M., Guo Y. Accelerometer calibration optimal design based on high-precision three-axis turntable. In 2016 IEEE International Conference on Information and Automation (ICIA). 2016. P. 2028–2032.
  10. Wang P., Gao Y., Wu M., Zhang F., Li G. In-field calibration of triaxial accelerometer based on beetle swarm antenna search algorithm. Sensors. 2020. Vol. 20. No. 3. P. 947–967.
  11. Cui X., Li Y., Wang Q., Zhang M., Li J. Three-axis magnetometer calibration based on optimal ellipsoidal fitting under constraint condition for pedestrian positioning system using foot-mounted inertial sensor/magnetometer. In 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). 2018. P. 166–174.
  12. Palamar A. Control system simulation by modular uninterruptible power supply unit with adaptive regulation function. Scientific Journal of TNTU. 2020. Vol. 98. No. 2. P. 129–136.
  13. Palamar A. Methods and means of increasing the reliability of computerized modular uninterruptible power supply system. Scientific Journal of TNTU. 2020. Vol. 99. No. 3. P. 133–141.
  14. Palamar M., Pasternak Y., Palamar A., Poikhalo A. Precision tracking of the trajectory LEO satellite by antenna with induction motors in the control system. Proceedings of the 2017 IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS 2017), Bucharest, Romania. 2017. Vol. 2. P. 1051–1055.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.