logo logo


High temperature oxidation of double carbide based hard alloys

НазваHigh temperature oxidation of double carbide based hard alloys
Назва англійськоюHigh temperature oxidation of double carbide based hard alloys
АвториLyudmyla Bodrova, Halyna Kramar, Ihor Koval, Serhii Marynenko, Olena Mul, Yaroslav Kovalchuk, Mykola Prokopiv
ПринадлежністьTernopil Ivan Puluj national technical University, Ukraine V. Bakul Institute for Superhard Materials of NAS of Ukraine, Ukraine
Бібліографічний описHigh temperature oxidation of double carbide based hard alloys / Lyudmyla Bodrova, Halyna Kramar, Ihor Koval, Serhii Marynenko, Olena Mul, Yaroslav Kovalchuk, Mykola Prokopiv // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 109. — No 1. — P. 5–15.
Bibliographic description:Bodrova L., Kramar H., Koval I., Marynenko S., Mul O., Kovalchuk Ya., Prokopiv M. (2023) High temperature oxidation of double carbide based hard alloys. Scientific Journal of TNTU (Tern.), vol 109, no 1, pp. 5–15.
УДК

669.018.25 (621.762)

Ключові слова

hard alloy, titanium and vanadium carbide, high temperature oxidation, kinetic, scale.

Dependences of the oxidation kinetics in air of titanium and vanadium carbide based hard alloys with a nickel-chromium binder and the structure, phase and chemical composition of the formed scale in the temperature range 800–1100 ̊С were found. The regularities of the oxidation process were determined by the weight method, the main kinetic characteristics were calculated.

ISSN:2522-4433
Перелік літератури
  1. Rajabia A., Ghazalia M. J., Syarifa J., Daudb A. R. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chemical Engineering Journal. 2014. Vol. 255. P. 445–452.
  2. Compton B. C., Zok F. W. Impact resistance of TiC-based cermets. International Journal of Impact Engineering. 2013. Vol. l. No. 62. P. 75–87.
  3. Sean R. Agnew, Liang Dong, Jasmine I. Keene, Haydn N.G. Wadley. Mechanical properties of large TiC-Mo-Ni cermet tiles. International Journal of Refractory Metals and Hard Materials. 2018. Vol. 75. P. 238–247.
  4. Koval I. V., Bodrova L. G., Kramar H. M., Marynenko S. Yu., Kovalchuk Ya.O. Influence of nano-Ni on the microstructure of multicarbide based alloys. Procedia Structural Integrity. 2022. Vol. 36. P. 51–58.
  5. Min Chen, Xuefeng Zhang, Xuan Xiao and Haiquan Zhao. Effect of VC additions on the microstructure and mechanical properties of TiC-based cermets. Materials Research Express. 2020. Vol. 7. No. 10. P. 106527
  6. Lee Y. H, Ko S, Park H., et al. Effect of TiC particle size on high temperature oxidation behavior of TiC reinforced stainless steel. Applied Surface Science. 2019. Vol. 480. P. 951.
  7. Voitovich V. B. Mechanism of the High Temperature Oxidation of Titanium Carbide. High Temperature Materials and Processes. 1994. Vol. 16. No. 4. P. 243–253.
  8. Pelekh M. P., Verkhola I. I. Vplyv rezhymiv vysokotemperaturnoho okyslennia tverdykh splaviv WC-Co na yikh ekspluatatsiinu i probyvnu zdatnist. Viiskovo-tekhnichnyi zbirnyk. 2017. No. 17. P. 27–31. [In Ukrainian].
  9. Shi X., Yang H., Shao G., Duan X., Wang S. Oxidation of ultrafine-cemented carbide prepared from nanocrystalline WC–10Co composite powder. Ceramics International. 2008. Vol. 34. P. 2043–2049.
  10. Aristizabal M., Sanchez J. M., Rodriguez N., Ibarreta F., Martinez R. Comparison of the oxidation behaviour of WC–Co and WC–Ni–Co–Cr cemented carbides. Corrosion Science. 2011. Vol. 53. P. 2754–2760.
  11. Barbatti C., Garcia J., Brito P., Pyzalla A.R. Influence of WC replacement by TiC and (Ta,Nb)C on the oxidation resistance of Co-based cemented carbides. International Journal of Refractory Metals and Hard Materials. 2009. Vol. 27. P. 768–776.
  12. Voitovich V. B., Sverdel V. V., Voitovich R. F., Golovko E. I. Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800°C. International Journal of Refractory Metals and Hard Materials. 1996. Vol. 14. P. 289–295.
  13. Hui, LUO Ji. Preparation and high temperature oxidation properties of TiC−NiCrCoMo steel bonded cemented carbides. Powder Metallurgy Technology. 2021. Vol. 39. No. 2. P. 147–152.
  14. Bouhieda S., Rouillard F., Barnier V. & Wolski, K. Selective oxidation of chromium by O2 impurities in CO2 during initial stages of oxidation. Oxidation of Metals. 2013. Vol. 80. P. 493–503.
  15. Gang Zhu, Ying Liu, Jinwen Ye. Early high temperature oxidation behavior of Ti(C,N)- based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Refractory Metals and Hard Materials. 2014. Vol. 44. P. 35–41.
  16. Shi Y., Yang B., Liaw P. K. Corrosion-Resistant High-Entropy Alloys: A Review. Metals. 2017. Vol. 7. No. 2. P. 43.
  17. Chang C. H., Titus M. S., Yeh J. W. Oxidation Behavior between 700 and 1300◦C of Refractory TiZrNbHfTa High-Entropy Alloys Containing Aluminum. Advanced Engineering Materials. 2018. No. 20. P. 1700948.
  18. Bin Huang, Xianchen Tang, Yanping Chen, Hao Cheng, Junhan Yang, Weihao Xiong. High temperature oxidation behaviors of Ni3Al-bonded cermets. Journal of Alloys and Compounds. 2017. Vol. 704. P. 443–452.
  19. Tyler L., Stewart Kevin P. Plucknett. The sliding wear of TiC and Ti(C,N) cermets prepared with a stoichiometric Ni3Al binder. Tribology International. 2014. Vol. 318. P. 153–167.
  20. Chen D., Colas J., Pons Michel, Mercier Frédéric, Boichot R., et al. High temperature properties of AlN coatings deposited by chemical vapor deposition for solar central receivers. Surface and Coatings Technology. 2019. 377. P.124872.
  21. Yeh, C.T., Tuan, W.H. Oxidation mechanism of aluminum nitride revisited. Journal of Advanced Ceramics. 2017. Vol. 6. No. 1. P. 27–32.
  22. Koval I. V., Bodrova L. G., Kramar H. M., Mul O. V. Effect of Sintering Temperature and the Content of Nanoscale Tungsten Carbide on the Mechanical Properties of Polycarbide based Hard Alloys. European Congress and Exhibition on Powder. Reims. France. 2015. 4 p.
  23. Lavrenko V. A., Procenko T. G., Kudinov V. D., Lugovskaya V. S. Vysokotemperaturnoe okislenie tverdogo splava KNT16. Sverxtvyordye materialy. 1982. No.1. P. 18–21. [In Russsian].
  24. Lazaryuk V. V., Bodrova L. G., Bodrov V. P. Effect of chromium on high temperature oxidation of TiC-based cermets. Euro PM 2005: Powder Metallurgy Congress and Exhibition. Prague. 2005. P. 223–228.

 

References:
  1. Rajabia A., Ghazalia M. J., Syarifa J., Daudb A. R. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chemical Engineering Journal. 2014. Vol. 255. P. 445–452.
  2. Compton B. C., Zok F. W. Impact resistance of TiC-based cermets. International Journal of Impact Engineering. 2013. Vol. l. No. 62. P. 75–87.
  3. Sean R. Agnew, Liang Dong, Jasmine I. Keene, Haydn N.G. Wadley. Mechanical properties of large TiC-Mo-Ni cermet tiles. International Journal of Refractory Metals and Hard Materials. 2018. Vol. 75. P. 238–247.
  4. Koval I. V., Bodrova L. G., Kramar H. M., Marynenko S. Yu., Kovalchuk Ya.O. Influence of nano-Ni on the microstructure of multicarbide based alloys. Procedia Structural Integrity. 2022. Vol. 36. P. 51–58.
  5. Min Chen, Xuefeng Zhang, Xuan Xiao and Haiquan Zhao. Effect of VC additions on the microstructure and mechanical properties of TiC-based cermets. Materials Research Express. 2020. Vol. 7. No. 10. P. 106527
  6. Lee Y. H, Ko S, Park H., et al. Effect of TiC particle size on high temperature oxidation behavior of TiC reinforced stainless steel. Applied Surface Science. 2019. Vol. 480. P. 951.
  7. Voitovich V. B. Mechanism of the High Temperature Oxidation of Titanium Carbide. High Temperature Materials and Processes. 1994. Vol. 16. No. 4. P. 243–253.
  8. Pelekh M. P., Verkhola I. I. Vplyv rezhymiv vysokotemperaturnoho okyslennia tverdykh splaviv WC-Co na yikh ekspluatatsiinu i probyvnu zdatnist. Viiskovo-tekhnichnyi zbirnyk. 2017. No. 17. P. 27–31. [In Ukrainian].
  9. Shi X., Yang H., Shao G., Duan X., Wang S. Oxidation of ultrafine-cemented carbide prepared from nanocrystalline WC–10Co composite powder. Ceramics International. 2008. Vol. 34. P. 2043–2049.
  10. Aristizabal M., Sanchez J. M., Rodriguez N., Ibarreta F., Martinez R. Comparison of the oxidation behaviour of WC–Co and WC–Ni–Co–Cr cemented carbides. Corrosion Science. 2011. Vol. 53. P. 2754–2760.
  11. Barbatti C., Garcia J., Brito P., Pyzalla A.R. Influence of WC replacement by TiC and (Ta,Nb)C on the oxidation resistance of Co-based cemented carbides. International Journal of Refractory Metals and Hard Materials. 2009. Vol. 27. P. 768–776.
  12. Voitovich V. B., Sverdel V. V., Voitovich R. F., Golovko E. I. Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800°C. International Journal of Refractory Metals and Hard Materials. 1996. Vol. 14. P. 289–295.
  13. Hui, LUO Ji. Preparation and high temperature oxidation properties of TiC−NiCrCoMo steel bonded cemented carbides. Powder Metallurgy Technology. 2021. Vol. 39. No. 2. P. 147–152.
  14. Bouhieda S., Rouillard F., Barnier V. & Wolski, K. Selective oxidation of chromium by O2 impurities in CO2 during initial stages of oxidation. Oxidation of Metals. 2013. Vol. 80. P. 493–503.
  15. Gang Zhu, Ying Liu, Jinwen Ye. Early high temperature oxidation behavior of Ti(C,N)- based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Refractory Metals and Hard Materials. 2014. Vol. 44. P. 35–41.
  16. Shi Y., Yang B., Liaw P. K. Corrosion-Resistant High-Entropy Alloys: A Review. Metals. 2017. Vol. 7. No. 2. P. 43.
  17. Chang C. H., Titus M. S., Yeh J. W. Oxidation Behavior between 700 and 1300◦C of Refractory TiZrNbHfTa High-Entropy Alloys Containing Aluminum. Advanced Engineering Materials. 2018. No. 20. P. 1700948.
  18. Bin Huang, Xianchen Tang, Yanping Chen, Hao Cheng, Junhan Yang, Weihao Xiong. High temperature oxidation behaviors of Ni3Al-bonded cermets. Journal of Alloys and Compounds. 2017. Vol. 704. P. 443–452.
  19. Tyler L., Stewart Kevin P. Plucknett. The sliding wear of TiC and Ti(C,N) cermets prepared with a stoichiometric Ni3Al binder. Tribology International. 2014. Vol. 318. P. 153–167.
  20. Chen D., Colas J., Pons Michel, Mercier Frédéric, Boichot R., et al. High temperature properties of AlN coatings deposited by chemical vapor deposition for solar central receivers. Surface and Coatings Technology. 2019. 377. P.124872.
  21. Yeh, C.T., Tuan, W.H. Oxidation mechanism of aluminum nitride revisited. Journal of Advanced Ceramics. 2017. Vol. 6. No. 1. P. 27–32.
  22. Koval I. V., Bodrova L. G., Kramar H. M., Mul O. V. Effect of Sintering Temperature and the Content of Nanoscale Tungsten Carbide on the Mechanical Properties of Polycarbide based Hard Alloys. European Congress and Exhibition on Powder. Reims. France. 2015. 4 p.
  23. Lavrenko V. A., Procenko T. G., Kudinov V. D., Lugovskaya V. S. Vysokotemperaturnoe okislenie tverdogo splava KNT16. Sverxtvyordye materialy. 1982. No.1. P. 18–21. [In Russsian].
  24. Lazaryuk V. V., Bodrova L. G., Bodrov V. P. Effect of chromium on high temperature oxidation of TiC-based cermets. Euro PM 2005: Powder Metallurgy Congress and Exhibition. Prague. 2005. P. 223–228.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.