logo logo


The methodical peculiarities of the investigation of portal crane rolled steels degradation

НазваThe methodical peculiarities of the investigation of portal crane rolled steels degradation
Назва англійськоюThe methodical peculiarities of the investigation of portal crane rolled steels degradation
АвториOleksandr Nesterov
ПринадлежністьOdesa National Maritime University, Odesa, Ukraine
Бібліографічний описThe methodical peculiarities of the investigation of portal crane rolled steels degradation / Oleksandr Nesterov // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 109. — No 1. — P. 66–71.
Bibliographic description:Nesterov O. (2023) The methodical peculiarities of the investigation of portal crane rolled steels degradation. Scientific Journal of TNTU (Tern.), vol 109, no 1, pp. 66–71.
DOI: https://doi.org/10.33108/visnyk_tntu2023.01.066
УДК

621.875

Ключові слова

portal crane, rolled steel, in-service degradation, brittle fracture resistance, delamination.

Rolled structural steels of port structures, operating under intensive cyclic loading, are particularly susceptible to the degradation of their mechanical properties. Advantages of the investigation of operational degradation of steels based not on fatigue strength characteristics, but on characteristics of resistance to brittle fracture using the example of determining the impact strength of longitudinal and transverse Charpy samples in relation to the rolling direction of sheet metal for 10 local areas at different structural nodes of portal crane are analyzed. This is caused to a great extend by micro-layering along the stretched fibers in the rolling direction of the rolled product. Accordingly, the mechanical properties of the metal become particularly sensitive to the direction of samples cutting in relation to the direction of rolling. Therefore, in order to evaluate the steel operational degradation it is recommended to use transverse samples in which the direction of micro-laayering coincides with the direction of rolling. Possible role of the marine environment in enhancing the degradation of steel due to its flooding properties is also considered in this paper.

ISSN:2522-4433
Перелік літератури
  1. Iegupov K., Rudenko S., Nemchuk O. Safety and development of marine transportation-technological systems. Industrial Machine Building: Civil Engineering. 2018. Vol. 51. Iss. 2. P. 45–49.
  2. Zrnic N. D., Bosnjak S. M., Gasic V. M., Arsic M. A., Petkovic Z. D. Failure analysis of the tower crane counterjib. Procedia Eng. 2011. Vol. 10. P. 2238–2243.
  3. Nemchuk O. O., Nesterov O. A. In-service brittle fracture resistance degradation of steel in a ship-to-shore portal crane. Strength of Materials. 2020. Vol. 52. Nо. 2. P. 275–280.
  4. Semenov P. О., Pustovyi V. М. Complex diagnostics of the state of operated elements of a grab reloader. Mat. Sci. 2020. Vol. 56. Nо. 2. P. 181–186.
  5. Pustovyi V. М., Semenov P. О., Nemchuk О. О., Hredil M. I., Nesterov O. A., Strelbitskyi V. V. Degradation of Steels of the Reloading Equipment Operating Beyond Its Designed Service Life. Materials Science. 2022. Vol. 57. P. 640–648.
  6. Li-xin Ren, Jian-qiang Ma, Yao-ting Tong, Zheng-qiu Huang. A review of fatigue life prediction method for portal crane. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 657. 012094. Doi: 10.1088/1755-1315/657/1/012094.
  7. Zvirko О. І. Electrochemical methods for the evaluation of the degradation of structural steels intended for long-term operation. Materials Science. 2017. Vol. 52. Nо. 4. P. 588–594.
  8.  Nemchuk O. O. Influence of the working loads on the corrosion resistance of steel of a marine harbor crane. Materials Science. 2019. Vol. 54. Nо. 5. P. 743–747.
  9. Krasowsky A. Y., Dolgiy A. A., and Torop V. M. Charpy testing to estimate pipeline steel degradation after 30 years of operation. Proc. “Charpy Centary Conference”, Poitiers. 2001. Vol. 1. P. 489–495.
  10. Nemchuk O. O., Krechkovska H. V. Fractographic substantiation of the loss of resistance to brittle fracture of steel after operation in the marine gantry crane elements. Metallofiz. Noveishie Tekhnol. 2019. Vol. 41.  P. 825–836.
  11. Krechkovs’ka H. V., Student O. Z. Determination of the degree of degradation of steels of steam pipelines according to their impact toughness on specimens with different geometries of notches. Materials Science. 2017. Vol. 52. Nо. 4. P. 566–571.
  12. T. Tsuru, Ya. Huang, Md. R. Ali, A. Nishikata Hydrogen entry into steel during atmospheric corrosion process. Corr. Sci. 2005. Vol. 47. Nо. 10. P. 2431–2440.
  13. Omura T., Kudo T., Fujimoto S. Environmental factors affecting hydrogen entry into high strength steel due to atmospheric corrosion. Mat. Trans. 2006. Vol. 47. Nо. 12. Р. 2956–2962.
  14. Nemchuk O., Hredil M., Pustovoy V., Nesterov O. Role of in-service conditions in operational degradation of mechanical properties of portal cranes steel. Procedia Structural Integrity. 2019. Vol. 16. P. 245–251.
  15. Maruschak P., Danyliuk I., Prentkovskis O., Bishchak R., Pylypenko A., Sorochak A. Degradation of the main gas pipeline material and mechanisms of its fracture. Journal of Civil Engineering and Management. 2014. Vol. 20. Issue 6. Р. 864–872.
  16. Nykyforchyn H., Zvirko O., Dzioba I., Krechkovska H., Hredil M., Tsyrulnyk O., Student O., Lipiec S., Pala R. Pala Assessment of operational degradation of pipeline steels. Materials. 2021. Vol. 14. P. 3247.
  17. Kittel J., Martin J.W., Cassagne T., Bosch C. Hydrogen induced cracking (HIC) – Laboratory testing assessment of low alloy steel linepipe. Corrosion 2008, Mar 2008, New-Orleans, United States. ffhal-02475529.
References:
  1. Iegupov K., Rudenko S., Nemchuk O. Safety and development of marine transportation-technological systems. Industrial Machine Building: Civil Engineering. 2018. Vol. 51. Iss. 2. P. 45–49.
  2. Zrnic N. D., Bosnjak S. M., Gasic V. M., Arsic M. A., Petkovic Z. D. Failure analysis of the tower crane counterjib. Procedia Eng. 2011. Vol. 10. P. 2238–2243.
  3. Nemchuk O. O., Nesterov O. A. In-service brittle fracture resistance degradation of steel in a ship-to-shore portal crane. Strength of Materials. 2020. Vol. 52. Nо. 2. P. 275–280.
  4. Semenov P. О., Pustovyi V. М. Complex diagnostics of the state of operated elements of a grab reloader. Mat. Sci. 2020. Vol. 56. Nо. 2. P. 181–186.
  5. Pustovyi V. М., Semenov P. О., Nemchuk О. О., Hredil M. I., Nesterov O. A., Strelbitskyi V. V. Degradation of Steels of the Reloading Equipment Operating Beyond Its Designed Service Life. Materials Science. 2022. Vol. 57. P. 640–648.
  6. Li-xin Ren, Jian-qiang Ma, Yao-ting Tong, Zheng-qiu Huang. A review of fatigue life prediction method for portal crane. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 657. 012094. Doi: 10.1088/1755-1315/657/1/012094.
  7. Zvirko О. І. Electrochemical methods for the evaluation of the degradation of structural steels intended for long-term operation. Materials Science. 2017. Vol. 52. Nо. 4. P. 588–594.
  8.  Nemchuk O. O. Influence of the working loads on the corrosion resistance of steel of a marine harbor crane. Materials Science. 2019. Vol. 54. Nо. 5. P. 743–747.
  9. Krasowsky A. Y., Dolgiy A. A., and Torop V. M. Charpy testing to estimate pipeline steel degradation after 30 years of operation. Proc. “Charpy Centary Conference”, Poitiers. 2001. Vol. 1. P. 489–495.
  10. Nemchuk O. O., Krechkovska H. V. Fractographic substantiation of the loss of resistance to brittle fracture of steel after operation in the marine gantry crane elements. Metallofiz. Noveishie Tekhnol. 2019. Vol. 41.  P. 825–836.
  11. Krechkovs’ka H. V., Student O. Z. Determination of the degree of degradation of steels of steam pipelines according to their impact toughness on specimens with different geometries of notches. Materials Science. 2017. Vol. 52. Nо. 4. P. 566–571.
  12. T. Tsuru, Ya. Huang, Md. R. Ali, A. Nishikata Hydrogen entry into steel during atmospheric corrosion process. Corr. Sci. 2005. Vol. 47. Nо. 10. P. 2431–2440.
  13. Omura T., Kudo T., Fujimoto S. Environmental factors affecting hydrogen entry into high strength steel due to atmospheric corrosion. Mat. Trans. 2006. Vol. 47. Nо. 12. Р. 2956–2962.
  14. Nemchuk O., Hredil M., Pustovoy V., Nesterov O. Role of in-service conditions in operational degradation of mechanical properties of portal cranes steel. Procedia Structural Integrity. 2019. Vol. 16. P. 245–251.
  15. Maruschak P., Danyliuk I., Prentkovskis O., Bishchak R., Pylypenko A., Sorochak A. Degradation of the main gas pipeline material and mechanisms of its fracture. Journal of Civil Engineering and Management. 2014. Vol. 20. Issue 6. Р. 864–872.
  16. Nykyforchyn H., Zvirko O., Dzioba I., Krechkovska H., Hredil M., Tsyrulnyk O., Student O., Lipiec S., Pala R. Pala Assessment of operational degradation of pipeline steels. Materials. 2021. Vol. 14. P. 3247.
  17. Kittel J., Martin J.W., Cassagne T., Bosch C. Hydrogen induced cracking (HIC) – Laboratory testing assessment of low alloy steel linepipe. Corrosion 2008, Mar 2008, New-Orleans, United States. ffhal-02475529.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.