logo logo


Dependence of the rate of corrosion and hydrogen diffusion of 09Mn2Si steel on the concentration of hydrogen sulphide in chloride-acetate environments

НазваDependence of the rate of corrosion and hydrogen diffusion of 09Mn2Si steel on the concentration of hydrogen sulphide in chloride-acetate environments
Назва англійськоюDependence of the rate of corrosion and hydrogen diffusion of 09Mn2Si steel on the concentration of hydrogen sulphide in chloride-acetate environments
АвториBohdan Datsko, Maryan Chuchman, Vasyl Ivashkiv, Svitlana Halaichak
ПринадлежністьKarpenko Physico-Mechanical Institute of National Academy of Science of Ukraine, Lviv, Ukraine
Бібліографічний описDependence of the rate of corrosion and hydrogen diffusion of 09Mn2Si steel on the concentration of hydrogen sulphide in chloride-acetate environments / Bohdan Datsko, Maryan Chuchman, Vasyl Ivashkiv, Svitlana Halaichak // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 109. — No 1. — P. 130–137.
Bibliographic description:Datsko B., Chuchman M., Ivashkiv V., Halaichak S. (2023) Dependence of the rate of corrosion and hydrogen diffusion of 09Mn2Si steel on the concentration of hydrogen sulphide in chloride-acetate environments. Scientific Journal of TNTU (Tern.), vol 109, no 1, pp. 130–137.
DOI: https://doi.org/10.33108/visnyk_tntu2023.01.130
УДК

620.193 

Ключові слова

corrosion, hydrogenation, hydrogen sulfide, hydrogen, diffusion.

It is found that with increasing concentration of hydrogen sulphide (H2S) to 100, 1000 and 2800 mg/dm3 (H2Ssat) the corrosion rate (C) of steel 09Mn2Si increases by ~1,48; 1,58 and ~1,64 times in 24 hours of exposure, however, in 720 h, it increases by ~1,8 and ~3,3 times at its concentration of 1000 mg/dm3 and saturation, while at 100 mg/dm3 C decreases by 1,8 times, which is due to the formation of continuous sulphide films. It is shown that the volume amount of hydrogen in 09Mn2Si steel increases with the increase of H2S content of the solution from 100; 500; 1500 and 2800 mg/dm3 in 1,2; 1,5; 1,9 and 2,5 times. Hydrogen diffusion increases from 0.9·10-6 to 2.7·10-6 cm2/s with the increase of membrane thickness from 0,75 to 1,50 mm and does not depend on the H2S content.

ISSN:2522-4433
Перелік літератури
  1. Papavinasam S. Corrosion Control in the Oil and Gas Industry, Texas, Gulf Professional Publishing, 2013, 1020 р.
  2. Monnot M., Nogueira R., Roche V. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement, Appl. Surf. Sci. Vol. 394. 2017. P. 132–141.
  3. Genchev G., Erbe. A. Sour gas corrosion – corrosion of steels and other metallic materials in aqueous environments containing H2S, Reference module in chemistry, molecular sci. and chem. eng., Oxford, Elsevier, 2017. P. 221– 231.
  4. Hedges B., Sprague K. A review of monitoring and inspection techniques for CO2&H2S corrosion in oil&gas production facilities, NACE Corrosion, Paper no. 06120, 2006.
  5. Radkevych O., Pokhmurs’kyi V. Influence of hydrogen sulfide on the serviceability of materials of gas-field equipment, Fiz.-Khim. Mekh. Mater. Vol. 37. No. 2. 2001. P. 157–169.
  6. Smith S., Joosten M. Corrosion of carbon steel by H2S in CO2 containing oil field environments, NACE Corrosion, Paper no. 06115, 2006.
  7. Beidokhti B., Dolati A., Koukabi A. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking, Materials Science and Engineering. Vol. 507. No. 1. 2009. P. 167–173.
  8. Devanathan M. A., Stachurski Z. J. The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates, Electrochem. Soc. Vol. 111. No. 5. 1964. P. 619–623.
  9. Wang S. H., Luu W. C., Ho K. F., Wu J. K. Hydrogen permeation in a submerged arc weldment of TMCP steel, Mater. Chem. and Phys. Vol. 77. No. 2. 2003. P. 447–454.
  10. Addach H., Bercot P., Rezrazi M., Wery M. Hydrogen permeation in iron at different temperatures, Mater. Let. Vol. 59. No. 11. 2005. P. 1347–1351.
  11. Samoilova O. V., Zamyatina O. V. Activity and standards of ISO and IEC in the field of corrosion and corrosion protection1, Protec. of Met. Vol. 41. No. 2. 2005. P. 177–186.
  12. Roberge P. R. Handbook of Corrosion Engineering, 2nd ed. McGraw-Hill Education, NY, 2012, 1130 p.
  13. Ding H, Guo H. Estimating phase shifts from three fringe patterns by use of cross spectrum, Appl Opt. Vol. 56. No. 4. 2017. P. 916–927.
  14. ISO 7384:1986 Corrosion tests in artificial atmosphere – General requirements.
  15. Yen S. K., Huang I. B. Hydrogen permeation tests in laminates: Application to grain/grain boundary of AISI 430 stainless steel. Corrosion. Vol. 59. No. 11. 2003. P. 995–1002.
  16. Khoma M. S. Problems of fracture of metals in hydrogen-sulfide media, Mater. Sci. Vol. 46. No. 2. 2010. P. 190–200.
References:
  1. Papavinasam S. Corrosion Control in the Oil and Gas Industry, Texas, Gulf Professional Publishing, 2013, 1020 р.
  2. Monnot M., Nogueira R., Roche V. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement, Appl. Surf. Sci. Vol. 394. 2017. P. 132–141.
  3. Genchev G., Erbe. A. Sour gas corrosion – corrosion of steels and other metallic materials in aqueous environments containing H2S, Reference module in chemistry, molecular sci. and chem. eng., Oxford, Elsevier, 2017. P. 221– 231.
  4. Hedges B., Sprague K. A review of monitoring and inspection techniques for CO2&H2S corrosion in oil&gas production facilities, NACE Corrosion, Paper no. 06120, 2006.
  5. Radkevych O., Pokhmurs’kyi V. Influence of hydrogen sulfide on the serviceability of materials of gas-field equipment, Fiz.-Khim. Mekh. Mater. Vol. 37. No. 2. 2001. P. 157–169.
  6. Smith S., Joosten M. Corrosion of carbon steel by H2S in CO2 containing oil field environments, NACE Corrosion, Paper no. 06115, 2006.
  7. Beidokhti B., Dolati A., Koukabi A. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking, Materials Science and Engineering. Vol. 507. No. 1. 2009. P. 167–173.
  8. Devanathan M. A., Stachurski Z. J. The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates, Electrochem. Soc. Vol. 111. No. 5. 1964. P. 619–623.
  9. Wang S. H., Luu W. C., Ho K. F., Wu J. K. Hydrogen permeation in a submerged arc weldment of TMCP steel, Mater. Chem. and Phys. Vol. 77. No. 2. 2003. P. 447–454.
  10. Addach H., Bercot P., Rezrazi M., Wery M. Hydrogen permeation in iron at different temperatures, Mater. Let. Vol. 59. No. 11. 2005. P. 1347–1351.
  11. Samoilova O. V., Zamyatina O. V. Activity and standards of ISO and IEC in the field of corrosion and corrosion protection1, Protec. of Met. Vol. 41. No. 2. 2005. P. 177–186.
  12. Roberge P. R. Handbook of Corrosion Engineering, 2nd ed. McGraw-Hill Education, NY, 2012, 1130 p.
  13. Ding H, Guo H. Estimating phase shifts from three fringe patterns by use of cross spectrum, Appl Opt. Vol. 56. No. 4. 2017. P. 916–927.
  14. ISO 7384:1986 Corrosion tests in artificial atmosphere – General requirements.
  15. Yen S. K., Huang I. B. Hydrogen permeation tests in laminates: Application to grain/grain boundary of AISI 430 stainless steel. Corrosion. Vol. 59. No. 11. 2003. P. 995–1002.
  16. Khoma M. S. Problems of fracture of metals in hydrogen-sulfide media, Mater. Sci. Vol. 46. No. 2. 2010. P. 190–200.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.