logo logo


High-performance methods for modeling and identification of two-level filtration transport in a heterogeneous media of nanoporous particles

НазваHigh-performance methods for modeling and identification of two-level filtration transport in a heterogeneous media of nanoporous particles
Назва англійськоюHigh-performance methods for modeling and identification of two-level filtration transport in a heterogeneous media of nanoporous particles
АвториMykhaylo Petryk, Dmytro Mykhalyk, Vitalii Chyz, Vasil Kovbashyn, Stepan Balaban, Mykola Vasyliv
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описHigh-performance methods for modeling and identification of two-level filtration transport in a heterogeneous media of nanoporous particles / Mykhaylo Petryk, Dmytro Mykhalyk, Vitalii Chyz, Vasil Kovbashyn, Stepan Balaban, Mykola Vasyliv // Scientific Journal of TNTU. — Tern.: TNTU, 2024. — Vol 116. — No 4. — P. 59–69.
Bibliographic description:Petryk M., Mykhalyk D., Chyz V., Kovbashyn V., Balaban S., Vasyliv M. (2024) High-performance methods for modeling and identification of two-level filtration transport in a heterogeneous media of nanoporous particles. Scientific Journal of TNTU (Tern.), vol 116, no 4, pp. 59–69.
DOI: https://doi.org/10.33108/visnyk_tntu2024.04.059
УДК

519.6

Ключові слова
Two-level filtration, mass transfer, nanoporous particles, integral transformations, highperformance computing, parametric identification.
The paper presents formulations and mathematically justified solutions of nonlinear and linearized models of the «filtration-consolidation» type in heterogeneous multicomponent media saturated with nanoporous particle filtrate, described by boundary value problems for systems of integro-differential equations of the second order. Proposed formulations consider equilibrium mechanisms, the system of multi-interface interactions, and a two-level transport system micro- and nanopores of particles and interparticle space. The direct and conjugate problems of parametric identification has been defined, the solutions were substantiated and obtained, and analytical expressions of the gradients of functionals were obtained to restore the studied identification parameters.
ISSN:2522-4433
Перелік літератури

1. Barenblatt G., Entov V., Ryzhik V. Theory of fluid flows through natural rocks. Dordrecht: Kluwer, 1990, 396 p.
2. Babaei M., Kiarasi F., Asemi K., & Hosseini M. (2022) Functionally graded saturated porous structures: A review. Journal of Computational Applied Mechanics. 53 (2). pp. 297–308. Available at: https://doi.org/ 10.22059/JCAMECH.2022.342710.719.
3. Bennett T. D., Coudert, F.-X., James S. L., Cooper A. I. (2021) The changing state of porous materials // Nature Materials, 20 (9), pp. 1179–1187. Available at: https://doi.org/10.1038/s41563-021-00957-w.
4. Cai J., Jin T., Kou J., Zou S., Xiao J., Meng Q. (2021) Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir, 37 (5), pp. 1623–1636. Available at: https://doi.org/10.1021/acs.langmuir.0c03134.
5. Chen L., He A., Zhao J., Kang Q., Li Z.-Y., Carmeliet J., Tao W.-Q. (2022) Pore-scale modeling of complex transport phenomena in porous media. Progress in Energy and Combustion Science, 88, 100968. Available at: https://doi.org/10.1016/j.pecs.2021.100968.
6. Wang J., Cahyadi A., Wu B., Pee W., Fane A. G., Chew J. W. (2020) The roles of particles in enhancing membrane filtration: A review. Journal of Membrane Science, 595, 117570. Available at: https://doi.org/10.1016/j.memsci.2019.117570.
7. J.-L. Lanoiselle, E. Vorobyov (Vorobiev), J.-M. Bouvier 1994) Modélisation du Pressage à Pressure Constant. Cas de Produits à Structure Cellulaire, Entropie, 30 (186), pp. 39–50.
8. Petryk M., Gancarczyk T., Khimich O. (2021) Methods Mathematical Modeling and Identification of Complex Processes and Systems on the Basis of High-Performance Calculations. Akademia Techniczno-Humanistyczna w Bielsko-Białej, Bielsko-Biała, 195 p.
9. Leniuk M. P., Petryk M. R. (2000). Intehralni peretvorennia Furie, Besselia iz spektralnym parametrom v zadachakh matematychnoho modeliuvannia masoperenosu v neodnoridnykh seredovyshchakh. Kyiv:Nauk. dumka, 372 p.
10. Doetsch G. (2013). Handbuch der Laplace-transformation: Band I: Theorie der Laplace-transformation. Springer Verlag, Basel, 581 p.
11. Petryk M., Vorobiev E. (2013) Numerical and analytical modeling of solid--liquid expression from soft plant materials. AIChE Journal, 59 (12), pp. 4762–4771. Available at: https://doi.org/10.1002/aic.14213.
12. Petryk M., Vorobiev E. Liquid flowing from porous particles during the pressing of biological materials.Comput. Chem. Eng., 2007. 31, pp. 1336–1345. Available at: https://doi.org/10.1016/j.compchemeng.2006.12.011.
13. Lebovka N., Petyk M., Vorobiev E. (2022) Monte Carlo simulation of dead-end diafiltration of bidispersed particle suspensions. Physical Review E., vol. 106. 064610, doi: 10.1103/PhysRevE.106.064610.
14. Petryk M., Boyko I., Fessard J.,Lebovka N. (2023) Modelling of non-isothermal adsorption of gases in nanoporous adsorbent based on Langmuir equilibrium. Adsorption. Springer, vol. 29, рр. 141–150. https://doi.org/10.1007/s10450-023-00389-9
15. Petryk M. R. (2016) High Velocity Identification Methods of the Model Parameters of Filtration-Consolidation of Compressible Media of Moisture-Saturated Micro-Porous Particles. Journal of Automation and Information Sciences, vol. 48, issue 1, pp. 69–83, doi: 10.1615/JAutomatInfScien. v48.i1.80.

References:

1. Barenblatt G., Entov V., Ryzhik V. Theory of fluid flows through natural rocks. Dordrecht: Kluwer, 1990, 396 p.
2. Babaei M., Kiarasi F., Asemi K., & Hosseini M. (2022) Functionally graded saturated porous structures: A review. Journal of Computational Applied Mechanics. 53 (2). pp. 297–308. Available at: https://doi.org/ 10.22059/JCAMECH.2022.342710.719.
3. Bennett T. D., Coudert, F.-X., James S. L., Cooper A. I. (2021) The changing state of porous materials // Nature Materials, 20 (9), pp. 1179–1187. Available at: https://doi.org/10.1038/s41563-021-00957-w.
4. Cai J., Jin T., Kou J., Zou S., Xiao J., Meng Q. (2021) Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir, 37 (5), pp. 1623–1636. Available at: https://doi.org/10.1021/acs.langmuir.0c03134.
5. Chen L., He A., Zhao J., Kang Q., Li Z.-Y., Carmeliet J., Tao W.-Q. (2022) Pore-scale modeling of complex transport phenomena in porous media. Progress in Energy and Combustion Science, 88, 100968. Available at: https://doi.org/10.1016/j.pecs.2021.100968.
6. Wang J., Cahyadi A., Wu B., Pee W., Fane A. G., Chew J. W. (2020) The roles of particles in enhancing membrane filtration: A review. Journal of Membrane Science, 595, 117570. Available at: https://doi.org/10.1016/j.memsci.2019.117570.
7. J.-L. Lanoiselle, E. Vorobyov (Vorobiev), J.-M. Bouvier 1994) Modélisation du Pressage à Pressure Constant. Cas de Produits à Structure Cellulaire, Entropie, 30 (186), pp. 39–50.
8. Petryk M., Gancarczyk T., Khimich O. (2021) Methods Mathematical Modeling and Identification of Complex Processes and Systems on the Basis of High-Performance Calculations. Akademia Techniczno-Humanistyczna w Bielsko-Białej, Bielsko-Biała, 195 p.
9. Leniuk M. P., Petryk M. R. (2000). Intehralni peretvorennia Furie, Besselia iz spektralnym parametrom v zadachakh matematychnoho modeliuvannia masoperenosu v neodnoridnykh seredovyshchakh. Kyiv:Nauk. dumka, 372 p.
10. Doetsch G. (2013). Handbuch der Laplace-transformation: Band I: Theorie der Laplace-transformation. Springer Verlag, Basel, 581 p.
11. Petryk M., Vorobiev E. (2013) Numerical and analytical modeling of solid--liquid expression from soft plant materials. AIChE Journal, 59 (12), pp. 4762–4771. Available at: https://doi.org/10.1002/aic.14213.
12. Petryk M., Vorobiev E. Liquid flowing from porous particles during the pressing of biological materials.Comput. Chem. Eng., 2007. 31, pp. 1336–1345. Available at: https://doi.org/10.1016/j.compchemeng.2006.12.011.
13. Lebovka N., Petyk M., Vorobiev E. (2022) Monte Carlo simulation of dead-end diafiltration of bidispersed particle suspensions. Physical Review E., vol. 106. 064610, doi: 10.1103/PhysRevE.106.064610.
14. Petryk M., Boyko I., Fessard J.,Lebovka N. (2023) Modelling of non-isothermal adsorption of gases in nanoporous adsorbent based on Langmuir equilibrium. Adsorption. Springer, vol. 29, рр. 141–150. https://doi.org/10.1007/s10450-023-00389-9
15. Petryk M. R. (2016) High Velocity Identification Methods of the Model Parameters of Filtration-Consolidation of Compressible Media of Moisture-Saturated Micro-Porous Particles. Journal of Automation and Information Sciences, vol. 48, issue 1, pp. 69–83, doi: 10.1615/JAutomatInfScien. v48.i1.80.

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.