logo logo


Experimental studies of the ventilation system for the intake of contaminated air

НазваExperimental studies of the ventilation system for the intake of contaminated air
Назва англійськоюExperimental studies of the ventilation system for the intake of contaminated air
АвториVitalii Yaropud
ПринадлежністьVinnytsia National Agrarian University, Vinnytsia, Ukraine
Бібліографічний описExperimental studies of the ventilation system for the intake of contaminated air / Vitalii Yaropud // Scientific Journal of TNTU. — Tern.: TNTU, 2024. — Vol 116. — No 4. — P. 100–110.
Bibliographic description:Yaropud V. (2024) Experimental studies of the ventilation system for the intake of contaminated air. Scientific Journal of TNTU (Tern.), vol 116, no 4, pp. 100–110.
DOI: https://doi.org/10.33108/visnyk_tntu2024.04.100
УДК

636.4:636.083.3

Ключові слова

microclimate, ventilation, system, air, pressure, pneumatic resistance, speed, temperature, damper, dependencies, coefficient, livestock premises.

The article presents the results of experimental research on the determination of the coefficient of reduction of the air flow rate, pressure losses and the necessary power consumption of the exhaust fan, depending on the rotation angle of the damper. The diagram and general view of the laboratory equipment for researching the operation modes of the intake damper, which is the part of the automatic ventilation system for the intake of contaminated air from livestock premises, is given. Its main element is an intake valve with servo drives. The damper is round-shaped and rotates around an axel that lies on its plane. Based on the results of the first stage of experimental studies of the ventilation system for the intake of polluted air, the dependences of the output air flow rate Vout, air consumption qout, the air flow rate reduction coefficient ι, the conditional area of the opening σout and the fan power consumption Ndamp on the input speed Vin, the angle of rotation of the damper β and the diameter were determined duct Dp. When the dampers are gradually opened by a given angle β(t), the inlet velocity Vin(t) increases from 11.42 m/s to 17.98 m/s, which is explained by the fact that the damper creates a certain pneumatic resistance and the air flow returns to in the opposite direction, while reducing the overall speed of the incoming air. At the outlet, the airflow velocity Vout(t) increases from 0.08 m/s to 17.83 m/s. Moments of opening of the damper occur within 1 s, and a significant increase in speed is observed, both at the inlet and at the outlet, due to the occurrence of turbulent motion. After opening the damper to a given angle, the speed decreases and stabilizes. According to the results of the second stage of experimental studies of the ventilation system for the intake of contaminated air, the algorithm for controlling the dampers depending on the ratio of gas concentrations was verified. The dependence of the power consumption of the fan N of the ventilation system for the intake of contaminated air on the length of the air duct between the L0 modules and the air consumption Qin was determined.

 

ISSN:2522-4433
Перелік літератури

1.     Lykhach V. Ya., Lykhach A. V. (2020). Technological innovations in pig breeding: monograph. Kyiv: FOP Yamchynskyi O. V., 291 p.
2.     Povod M., Bondarska O., Lykhach V., Zhizhka S., Nechmilov V., Dudin V. (2021). Technology of production and processing of pig products: a study guide. Kyiv: Scientific and Methodological Center of VFPO. 360 p.
3.     Samokhina E. A., Povod M. G., Mylostyviy R. V. (2018) Microclimate parameters in piggery premises in summer under different ventilation systems and their influence on the productivity of lactating sows and the growth of suckling piglets. Bulletin of the Sumy National Agrarian University. Series: Livestock, issue 2, pp. 218–223.
4.     Zhizhka S., Povod M. (2019) Reproductive qualities of sows depending on microclimate systems throughout the year. Bulletin of the Sumy National Agrarian University. Series: Livestock, issue 4 (39), pp. 85–91.
5.     Collin A., Vaz M. J., Le Dividich J. (2002) Effects of high temperature on body temperature and hormonal adjustments in piglets. Reprod. Nutr. Dev., 42, pp. 45–53. Doi: 10.1051/rnd:2002005.
6.     Tkachuk O. D. (2010) Influence of microclimate on the main indicators of pig resistance. Bulletin of the Poltava State Agrarian Academy, no. 2, pp. 136–140. Available at: https://www.pdau.edu.ua/sites/default/ files/visnyk/2010/02/136.pdf.
7.     Vranken E. (1999) Analysis and optimisation of ventilation control in livestock buildings. PhD Diss, no. 392. Leuven, Belgium: Catholic University Leuven, Laboratory for Agricultural Buildings Research..
8.     Shulga M. O., Aleksakhin O. O., Shushlyakov D. O. (2014). Heating and gas supply and ventilation: training. manual. Hark. national city university farm named after O. M. Beketova. XNUMG, 191 p.
9.     Duan Z., Changhong Z., Zhang X., Mustafa M., Alimohammadisagvand B., Hasan A., Zhao X. (2012) Indirect evaporative cooling: Past, present and future potentials. Renewable and Sustainable Energy Reviews, vol. 16, pp. 6823–6850. Doi: 10.1016/j.rser.2012.07.007.
10. Kaletnik G. M., Yaropud V. M. Mechatronic system of microclimate provision of livestock premises. Pat. № 148970 UA, IPC A01K 1/00, F24F 3/00, F24F 3/044, F24F 3/14, F24F 6/12, F24F 7/007; № u 202102133; statement 04/22/2021; published 05.10.2021, Bul. № 40. 7 p.
11. Kaletnik G. M., Yaropud V. M. Mechatronic system of microclimate provision of livestock premises. Pat. № 127795 UA, IPC (2023.01) A01K 1/00, F24F 3/00, F24F 3/044 (2006.01), F24F 3/14 (2006.01), F24F 6/12 (2006.01), F24F 7/007 (2006.01), F24F 11/00; № a 2021 02134; statement 04/22/2021; published 03.01.2024, Bul. № 1.
12. Kaletnik G. M., Yaropud V. M. (2023) Experimental studies of the effectiveness of systems for providing a negative pressure microclimate in livestock premises. Design, production and operation of agricultural machines, issue 53, pp. 66–84. Doi: https://doi.org/10.32515/2414-3820.2023.53.66-84.
13. Aliev E. B., Gavrilchenko O. S., Klyus A. V. Justification of the composition of energy-saving technical means to ensure the microclimate in livestock premises. Modern problems and technologies of the agricultural sector of Ukraine: Collection. scientific theses (November 21, 2019) / For science. Ed. V. S. Lukacha [and others]. Nizhin. P. 8–16.
14. Aliev E. B., Yaropud V. M., Bilous I. M. (2020) Justification of the composition of the energy-saving system for microclimate provision in piggery premises. Vibrations in engineering and technology, no. 2 (97), pp. 29–137. Doi: 10.37128/2306-8744-2020-2-14.

References:

1.     Lykhach V. Ya., Lykhach A. V. (2020). Technological innovations in pig breeding: monograph. Kyiv: FOP Yamchynskyi O. V., 291 p.
2.     Povod M., Bondarska O., Lykhach V., Zhizhka S., Nechmilov V., Dudin V. (2021). Technology of production and processing of pig products: a study guide. Kyiv: Scientific and Methodological Center of VFPO. 360 p.
3.     Samokhina E. A., Povod M. G., Mylostyviy R. V. (2018) Microclimate parameters in piggery premises in summer under different ventilation systems and their influence on the productivity of lactating sows and the growth of suckling piglets. Bulletin of the Sumy National Agrarian University. Series: Livestock, issue 2, pp. 218–223.
4.     Zhizhka S., Povod M. (2019) Reproductive qualities of sows depending on microclimate systems throughout the year. Bulletin of the Sumy National Agrarian University. Series: Livestock, issue 4 (39), pp. 85–91.
5.     Collin A., Vaz M. J., Le Dividich J. (2002) Effects of high temperature on body temperature and hormonal adjustments in piglets. Reprod. Nutr. Dev., 42, pp. 45–53. Doi: 10.1051/rnd:2002005.
6.     Tkachuk O. D. (2010) Influence of microclimate on the main indicators of pig resistance. Bulletin of the Poltava State Agrarian Academy, no. 2, pp. 136–140. Available at: https://www.pdau.edu.ua/sites/default/ files/visnyk/2010/02/136.pdf.
7.     Vranken E. (1999) Analysis and optimisation of ventilation control in livestock buildings. PhD Diss, no. 392. Leuven, Belgium: Catholic University Leuven, Laboratory for Agricultural Buildings Research..
8.     Shulga M. O., Aleksakhin O. O., Shushlyakov D. O. (2014). Heating and gas supply and ventilation: training. manual. Hark. national city university farm named after O. M. Beketova. XNUMG, 191 p.
9.     Duan Z., Changhong Z., Zhang X., Mustafa M., Alimohammadisagvand B., Hasan A., Zhao X. (2012) Indirect evaporative cooling: Past, present and future potentials. Renewable and Sustainable Energy Reviews, vol. 16, pp. 6823–6850. Doi: 10.1016/j.rser.2012.07.007.
10. Kaletnik G. M., Yaropud V. M. Mechatronic system of microclimate provision of livestock premises. Pat. № 148970 UA, IPC A01K 1/00, F24F 3/00, F24F 3/044, F24F 3/14, F24F 6/12, F24F 7/007; № u 202102133; statement 04/22/2021; published 05.10.2021, Bul. № 40. 7 p.
11. Kaletnik G. M., Yaropud V. M. Mechatronic system of microclimate provision of livestock premises. Pat. № 127795 UA, IPC (2023.01) A01K 1/00, F24F 3/00, F24F 3/044 (2006.01), F24F 3/14 (2006.01), F24F 6/12 (2006.01), F24F 7/007 (2006.01), F24F 11/00; № a 2021 02134; statement 04/22/2021; published 03.01.2024, Bul. № 1.
12. Kaletnik G. M., Yaropud V. M. (2023) Experimental studies of the effectiveness of systems for providing a negative pressure microclimate in livestock premises. Design, production and operation of agricultural machines, issue 53, pp. 66–84. Doi: https://doi.org/10.32515/2414-3820.2023.53.66-84.
13. Aliev E. B., Gavrilchenko O. S., Klyus A. V. Justification of the composition of energy-saving technical means to ensure the microclimate in livestock premises. Modern problems and technologies of the agricultural sector of Ukraine: Collection. scientific theses (November 21, 2019) / For science. Ed. V. S. Lukacha [and others]. Nizhin. P. 8–16.
14. Aliev E. B., Yaropud V. M., Bilous I. M. (2020) Justification of the composition of the energy-saving system for microclimate provision in piggery premises. Vibrations in engineering and technology, no. 2 (97), pp. 29–137. Doi: 10.37128/2306-8744-2020-2-14.

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.