logo logo


Features of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in CoppeliaSim environment

НазваFeatures of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in CoppeliaSim environment
Назва англійськоюFeatures of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in CoppeliaSim environment
АвториOleksandr Dobrzhanskii, Valerii Kyrylovych, Anton Kravchuk, Yevhen Pukhovskii, Volodymyr Savkiv
ПринадлежністьState University ‘Zhytomyr Polytechnic”, Ternopil Ivan Puluj National Technical University
Бібліографічний описFeatures of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in CoppeliaSim environment / Oleksandr Dobrzhanskii, Valerii Kyrylovych, Anton Kravchuk, YevhenPukhovskii, Volodymyr Savkiv // Scientific Journal of TNTU. — Tern.: TNTU, 2024. — Vol 116. — No 4. — P. 135–149.
Bibliographic description:Dobrzhanskii O., Kyrylovych V., Kravchuk A., Pukhovskii Y., Savkiv V. (2024) Features of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in CoppeliaSim environment. Scientific Journal of TNTU (Tern.), vol 116, no 4, pp. 135–149.
DOI: https://doi.org/10.33108/visnyk_tntu2024.04.135
УДК

621.865.82

Ключові слова

modelling, industrial robot, robotic technology, automated metric certification.

The paper is devoted to the problem of automated certification of industrial robot metrics (IRM) in the CoppeliaSim software environment. The authors in detail consider the capabilities and tools of the CoppeliaSim software environment for measuring and evaluating such spatial parameters of the IR as the working area and the configuration of the tool's geometric position. The results of the investigation of methods and approaches to the automated implementation of the metric, which make it possible to ensure reliability and accuracy in the further synthesis of elements of robotic technologies, such as optimisation of equipment placement, formation of the optimal trajectory of movement of links of the manipulation system of the IR with a tool or a gripper are presented in this paper. Rationale for the use of spatial 3D modelling with full-size virtual models of the IP in the CoppeliaSim environment are presented in the paper. The authors analyse the tools and instruments that allow taking into account the influence of primarily spatial factors on the metric of the IP, such as geometric parameters of the IP design, tools, gripper, possible limitations due to the design and technological features of the technological equipment. tools and the use of automated certification to maintain the quality of synthesis of robotic technologies in real conditions. This paper can be useful for researchers, engineers and students studying IRs in terms of their automated modelling and analysis.

ISSN:2522-4433
Перелік літератури
  1. Liu, Yuchen & Zhao, Lingyan & Liang, Maofei & Wang, Fayong. (2024). Kinematics Study of Six-Axis Industrial Robots Based on Virtual Simulation Technology. DOI:10.1007/978-981-99-9239-3_51, available at: https://www.researchgate.net/publication/377133228_Kinematics_Study_of_Six-Axis_Industrial_Robots_Based_on_Virtual_Simulation_Technology
  2. Li, Louis & Neau, Maëlic & Ung, Thomas & Buche, Cédric. (2024). Crossing Real and Virtual: Pepper Robot as an Interactive Digital Twin. DOI:10.1007/978-3-031-55015-7_23.
  3. Guanopatin, Alex & Ortiz, Jessica. (2023). Meaningful Learning Processes of Service Robots Through Virtual Environments. 59-73. DOI:10.1007/978-3-031-47454-5_5, available at: https://www.researchgate.net/publication/375163185_Meaningful_Learning_ Processes_of_Service_Robots_Through_Virtual_Environments
  4. Ge, Yate & Hu, Yuanda & Sun, Xiaohua. (2023). Co-Design of Service Robot Applications Using Virtual Reality. DOI:10.54941/ahfe1003868.
  5. Liu, Rongrong & Wandeto, John & Nageotte, Florent & Zanne, Philippe & De Mathelin, Michel & Dresp, Birgitta. (2023). Spatiotemporal modeling of grip forces captures proficiency in manual robot control, available at: https://www.researchgate.net/publication/369021403_Spatiotemporal_modeling_of_grip_forces_captures_proficiency_in_manual_robot_control
  6. Yamamoto, Junya & Tahara, Kenji & Wada, Takahiro. (2024). Effect of Presenting Stiffness of Robot Hand to Human on Human-Robot Handovers. DOI:10.36227/techrxiv.171198254.46018996/v1.
  7. Lu, Yuhao & Deng, Beixing & Wang, Zhenyu & Zhi, Peiyuan & Li, Yali & Wang, Shengjin. (2022). Hybrid Physical Metric For 6-DoF Grasp Pose Detection. DOI:10.48550/arXiv.2206.11141, available at: https://www.researchgate.net/publication/361479841_Hybrid_Physical_Metric_For_6-DoF_Grasp_Pose_Detection
  8. Barnfather, Joshua & Goodfellow, M.J. & Abram, T.. (2016). A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robotics and Computer-Integrated Manufacturing. 37. 49-56. DOI:10.1016/j.rcim.2015.06.002, available at: https://www.researchgate.net/publication/281716706_A_performance_evaluation_methodology_for_robotic_machine_tools_used_in_large_volume_manufacturing
  9. Slamani, Mohamed & Nubiola, Albert & Bonev, Ilian. (2012). Assessment of the positioning performance of an industrial robot. Industrial Robot: An International Journal. 39. 57-68. DOI:10.1108/01439911211192501, available at: https://www.researchgate.net/publication/238308032_Assessment_of_the_positioning_performance_of_an_industrial_robot
  10. Panneerselvam, Sivasankaran & Karthikeyan, R. (2020). Simulation of Robot Kinematic Motions using Collision Mapping Planner using Robo Dk Solver. International Journal of Innovative Technology and Exploring Engineering. 9. 2278-3075. DOI:10.35940/ijitee.J7588.0991120, available at: https://www.researchgate.net/publication/348232778_Simulation_of_Robot_Kinematic_Motions_using_Collision_Mapping_Planner_using_Robo_Dk_Solver
  11. Chakraborty, Sudip & Aithal, Sreeramana. (2021). ABB IRB 120-30.6 Build Procedure in RoboDK. International Journal of Management, Technology, and Social Sciences. 256-264. DOI:10.47992/IJMTS.2581.6012.0169, available at: https://www.researchgate.net/publication/357158252_ABB_IRB_120-306_Build_Procedure_in_RoboDK
  12. Henriques, João & Neto, Egídio & Paiva, João & Carneiro Souza, Letícia & Lugli, Alexandre & Florentino, Flávio & Carvalho, Giuliano. (2023). Trajectory Generation Using RoboDK for a Staubli SCARA TS 60 Robot. 121-126. DOI:10.1109/ICCMA59762.2023.10374649.
  13. Goryl, Karol & Pollák, Martin. (2023). Calibration of Panasonic TM-2000 Welding Robot Using Simulation Software. DOI:10.1007/978-3-031-31967-9_21.
  14. Salihovic, Indira & Skamo, Aida & Jokic, Dejan. (2021). RoboDK to MATLAB Joint Position Transformation. 1-6. DOI:10.1109/WZEE54157.2021.9576924.
  15. Chakraborty, Sudip & Aithal, Sreeramana. (2021). Forward and Inverse Kinematics Demonstration using RoboDK and C#. International Journal of Applied Engineering and Management Letters. 97-105. 
  16. Salihovic, Indira & Skamo, Aida & Jokic, Dejan. (2021). RoboDK to MATLAB Joint Position Transformation. 1-6. DOI:10.1109/WZEE54157.2021.9576924.
  17. Kyrylovych, Valerii & Kravchuk, Anton & Melnychuk, Petro & Mohelnytska, Liudmyla. (2021). Automated Attestation of Metrics for Industrial Robots’ Manipulation Systems. DOI:10.1007/978-3-030-68014-5_79. 
  18. Kyrylovych, Valerii & Kravchuk, Anton. (2021). A Three-Tiered Approach to The Initial Stages of Design of Collaborative Robotic. Technical sciences. Technologies Herald of Khmelnytskyi national university, Issue 4, 2023 (323) DOI:10.31891/2307-5732-2023-323-4-180-187 81.5.
  19. CoppeliaSim Homepage, available at: http://www.coppeliarobotics.com
  20. Chakraborty, Sudip & Aithal, Sreeramana. (2021). An Inverse Kinematics Demonstration of a Custom Robot using C# and CoppeliaSim. International Journal of Case Studies in Business, IT, and Education. 78-87. DOI:10.47992/IJCSBE.2581.6942.0102.
  21. ABB Homepage, available at: https://new.abb.com
  22. OnRobot - RG2 gripper, available at: https://onrobot.com/en/products/rg2-gripper
  23. Escobar, Laura; Kaveh, Kiumars (2020), "Convex polytopes, algebraic geometry, and combinatorics", Notices of the American Mathematical Society, 67 (8): 1116–1123, DOI:10.1090/noti2137, available at: https://www.ams.org/journals/notices/202008/rnoti-p1116.pdf
References:
  1. Liu, Yuchen & Zhao, Lingyan & Liang, Maofei & Wang, Fayong. (2024). Kinematics Study of Six-Axis Industrial Robots Based on Virtual Simulation Technology. DOI:10.1007/978-981-99-9239-3_51, available at: https://www.researchgate.net/publication/377133228_Kinematics_Study_of_Six-Axis_Industrial_Robots_Based_on_Virtual_Simulation_Technology
  2. Li, Louis & Neau, Maëlic & Ung, Thomas & Buche, Cédric. (2024). Crossing Real and Virtual: Pepper Robot as an Interactive Digital Twin. DOI:10.1007/978-3-031-55015-7_23.
  3. Guanopatin, Alex & Ortiz, Jessica. (2023). Meaningful Learning Processes of Service Robots Through Virtual Environments. 59-73. DOI:10.1007/978-3-031-47454-5_5, available at: https://www.researchgate.net/publication/375163185_Meaningful_Learning_ Processes_of_Service_Robots_Through_Virtual_Environments
  4. Ge, Yate & Hu, Yuanda & Sun, Xiaohua. (2023). Co-Design of Service Robot Applications Using Virtual Reality. DOI:10.54941/ahfe1003868.
  5. Liu, Rongrong & Wandeto, John & Nageotte, Florent & Zanne, Philippe & De Mathelin, Michel & Dresp, Birgitta. (2023). Spatiotemporal modeling of grip forces captures proficiency in manual robot control, available at: https://www.researchgate.net/publication/369021403_Spatiotemporal_modeling_of_grip_forces_captures_proficiency_in_manual_robot_control
  6. Yamamoto, Junya & Tahara, Kenji & Wada, Takahiro. (2024). Effect of Presenting Stiffness of Robot Hand to Human on Human-Robot Handovers. DOI:10.36227/techrxiv.171198254.46018996/v1.
  7. Lu, Yuhao & Deng, Beixing & Wang, Zhenyu & Zhi, Peiyuan & Li, Yali & Wang, Shengjin. (2022). Hybrid Physical Metric For 6-DoF Grasp Pose Detection. DOI:10.48550/arXiv.2206.11141, available at: https://www.researchgate.net/publication/361479841_Hybrid_Physical_Metric_For_6-DoF_Grasp_Pose_Detection
  8. Barnfather, Joshua & Goodfellow, M.J. & Abram, T.. (2016). A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robotics and Computer-Integrated Manufacturing. 37. 49-56. DOI:10.1016/j.rcim.2015.06.002, available at: https://www.researchgate.net/publication/281716706_A_performance_evaluation_methodology_for_robotic_machine_tools_used_in_large_volume_manufacturing
  9. Slamani, Mohamed & Nubiola, Albert & Bonev, Ilian. (2012). Assessment of the positioning performance of an industrial robot. Industrial Robot: An International Journal. 39. 57-68. DOI:10.1108/01439911211192501, available at: https://www.researchgate.net/publication/238308032_Assessment_of_the_positioning_performance_of_an_industrial_robot
  10. Panneerselvam, Sivasankaran & Karthikeyan, R. (2020). Simulation of Robot Kinematic Motions using Collision Mapping Planner using Robo Dk Solver. International Journal of Innovative Technology and Exploring Engineering. 9. 2278-3075. DOI:10.35940/ijitee.J7588.0991120, available at: https://www.researchgate.net/publication/348232778_Simulation_of_Robot_Kinematic_Motions_using_Collision_Mapping_Planner_using_Robo_Dk_Solver
  11. Chakraborty, Sudip & Aithal, Sreeramana. (2021). ABB IRB 120-30.6 Build Procedure in RoboDK. International Journal of Management, Technology, and Social Sciences. 256-264. DOI:10.47992/IJMTS.2581.6012.0169, available at: https://www.researchgate.net/publication/357158252_ABB_IRB_120-306_Build_Procedure_in_RoboDK
  12. Henriques, João & Neto, Egídio & Paiva, João & Carneiro Souza, Letícia & Lugli, Alexandre & Florentino, Flávio & Carvalho, Giuliano. (2023). Trajectory Generation Using RoboDK for a Staubli SCARA TS 60 Robot. 121-126. DOI:10.1109/ICCMA59762.2023.10374649.
  13. Goryl, Karol & Pollák, Martin. (2023). Calibration of Panasonic TM-2000 Welding Robot Using Simulation Software. DOI:10.1007/978-3-031-31967-9_21.
  14. Salihovic, Indira & Skamo, Aida & Jokic, Dejan. (2021). RoboDK to MATLAB Joint Position Transformation. 1-6. DOI:10.1109/WZEE54157.2021.9576924.
  15. Chakraborty, Sudip & Aithal, Sreeramana. (2021). Forward and Inverse Kinematics Demonstration using RoboDK and C#. International Journal of Applied Engineering and Management Letters. 97-105. 
  16. Salihovic, Indira & Skamo, Aida & Jokic, Dejan. (2021). RoboDK to MATLAB Joint Position Transformation. 1-6. DOI:10.1109/WZEE54157.2021.9576924.
  17. Kyrylovych, Valerii & Kravchuk, Anton & Melnychuk, Petro & Mohelnytska, Liudmyla. (2021). Automated Attestation of Metrics for Industrial Robots’ Manipulation Systems. DOI:10.1007/978-3-030-68014-5_79. 
  18. Kyrylovych, Valerii & Kravchuk, Anton. (2021). A Three-Tiered Approach to The Initial Stages of Design of Collaborative Robotic. Technical sciences. Technologies Herald of Khmelnytskyi national university, Issue 4, 2023 (323) DOI:10.31891/2307-5732-2023-323-4-180-187 81.5.
  19. CoppeliaSim Homepage, available at: http://www.coppeliarobotics.com
  20. Chakraborty, Sudip & Aithal, Sreeramana. (2021). An Inverse Kinematics Demonstration of a Custom Robot using C# and CoppeliaSim. International Journal of Case Studies in Business, IT, and Education. 78-87. DOI:10.47992/IJCSBE.2581.6942.0102.
  21. ABB Homepage, available at: https://new.abb.com
  22. OnRobot - RG2 gripper, available at: https://onrobot.com/en/products/rg2-gripper
  23. Escobar, Laura; Kaveh, Kiumars (2020), "Convex polytopes, algebraic geometry, and combinatorics", Notices of the American Mathematical Society, 67 (8): 1116–1123, DOI:10.1090/noti2137, available at: https://www.ams.org/journals/notices/202008/rnoti-p1116.pdf
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.