logo logo


Justification of the choice of components of the aerospace vehicle protection system

НазваJustification of the choice of components of the aerospace vehicle protection system
Назва англійськоюJustification of the choice of components of the aerospace vehicle protection system
АвториOlexandr Iskra, Elina Plisetska, Olexandr Lobunko
ПринадлежністьEducation and Research Institute of Aerospace Technologies, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
Бібліографічний описJustification of the choice of components of the aerospace vehicle protection system / Olexandr Iskra, Elina Plisetska, Olexandr Lobunko // Scientific Journal of TNTU. — Tern.: TNTU, 2025. — Vol 117. — No 1. — P. 42–53.
Bibliographic description:Iskra O., Plisetska E., Lobunko O. (2025) Justification of the choice of components of the aerospace vehicle protection system. Scientific Journal of TNTU (Tern.), vol 117, no 1, pp. 42–53.
DOI: https://doi.org/10.33108/visnyk_tntu2025.01.042
УДК

536.24

Ключові слова

aerospace vehicles, finite element method, mathematical modeling, thermal protection systems, thermal scheme, heat transfer.

During operation, aerospace vehicles are exposed to various factors specific to the external environment. The design of aerospace vehicles is a complex scientific and technical task, during the solution of which it is necessary to take into account the possible effect of factors on the structural elements and systems of the apparatus, and to include in the concept of the apparatus the means of its protection and ensuring its functioning in the expected conditions of use. This article presents the results of a review of the latest scientific research on improving the understanding of operating conditions and substantiating options for the elements of the aerospace vehicle protection system. Designers increasingly rely on computer modeling to assess the operating conditions of the objects they design and manufacture. Computer models are widely used to create and evaluate the effectiveness of various concepts of monitoring the technical condition and protection of aerospace systems, as well as to overcome significant problems at various stages of designing protection systems. The model of the object under study is discretized into elements with a uniform temperature field. Modeling and analysis were performed using specialized software, which is designed for the formation of a finite element model, performing all necessary calculations, presenting the results for further analysis and improving the properties of research objects.

ISSN:2522-4433
Перелік літератури
1. Ahuja A. (2020). Active Thermal Protection System for a Reusable Launch Vehicle: A Conceptual Design. Delft: Delft University of Technology, 98 p.
2. Al-Jothery H. K. M., Albarody T. M. B., Yusoff P. S. M., Abdullah M. A., Hussein A. R. (2019). A review of ultra-high temperature materials for thermal protection system. IOP Conference Series: Materials Science and Engineering. Symposium on Energy Systems 2019. Kuantan, Malaysia, 1–2 October 2019.
3. Asgar A., Raj S. N. S, Varghese J. T. (2019) Ablative Heating Technology in Hypersonic Re-entry Vehicles and Cruise. Aircrafts International Journal of Recent Technology and Engineering, no. 8, pp. 3007–3014. Available at: https://doi.org/10.35940/ijrte.C4844.098319.
4. Barcena J., Garmendia I., Triantou K., et al (2017). Infra-red and vibration tests of hybridablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems. Acta Astronaut 134. Р. 85–97.
6. Brociek R., Hetmaniok E., Słota D. (2022). Reconstruction of aerothermal heating for the thermal protection system of a reusable launch vehicle. Applied Thermal Engineering, no. 219. 13 p. Available at: https://doi.org/10.1016/j.applthermaleng.2022.119405
7. Dang D. Z. (2021). Thermal and Structural Response Modeling of a Woven Thermal Protection System. Ann Arbor : The University of Michigan. 149 p.
8. Di Fiore F., Maggiore P., Mainini L. (2021). Multifidelity domain‑aware learning for the design of re‑entry vehicles. Structural and Multidisciplinary Optimization, no. 64, pp. 3017–3035. Available at: https://doi. org/10.1007/s00158-021-03037-4.
9. Gupta R. K. & Ramkumar P. (2015). Titanium Aluminides for Metallic Thermal Protection System of Reusable Space Transportation Vehicle: A Review. Frontiers in Aerospace Engineering, 4 (1). Available at: http://doi.org/10.12783/fae.2015.0401.02.
10. Iskra O., Lobunko D., Lobunko O. (2023). Research of mechanisms of destruction and protection complex thermodynamic systems. European Science, 1 (sge23–01), 60–77. Available at: https://doi.org/10.30890/ 2709-2313.2023-23-01-015.
11. Jascha Wilken, Steffen Callsen, Dennis Daub, Alexander Fischer, Martin Liebisch, Carolin Rauh, Thomas Reimer, Henning Scheufler, Martin Sippel (2022). Combined cryogenic insulation and thermal protection systems for reusable stages. 9th European conference for aeronautics and space sciences.
12. Junjie G., Jijun Y., Haitao H., Daiying D. (2019). Prediction of Heat Transfer Characteristics of the Carbonized Layer of Resin-Based Ablative Material Based on the Finite Element Method. International Journal of Aerospace Engineering. 14 p. Available at: https://doi.org/10.1155/2019/8142532.
13. Lobunko O. P. & Іskra О. O. (2023). Mathematical Modeling of the Thermal Conditions of Aerospace Products’ Protection Systems. Cherkasy, Ukraine, September 12–14, pp. 8–10.
14. Lobunko O. P. & Iskra O. O. (2023). Substantiation of the protection system’s configuration for the reusable spacecraft. Brussels, Belgium, 16–18 August 2023, pp. 189–194.
15. Lobunko O. & Iskra O. (2023) Substantiation of the protection systems’ technical outline for the aerospace objects. Scientific Journal of TNTU, no. 112, pp. 102–114. Available at: https://doi.org/10.33108/visnyk_ tntu2023.04.
16. Ma S., Zhang S., Wu J., Zhang Y., Chu W., Wang Q. (2023). Experimental Study on Active Thermal Protection for Electronic Devices Used in Deep – Downhole − Environment Exploration. Energies 2023, 16, 1231. Available at: https://doi.org/10.3390/en16031231.
16. Masayuki Naito, Satoshi Kodaira, Ryo Ogawara, Kenji Tobita and other (2020). Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 26, pp. 69–76.
17. National Aeronautics and Space Administration (2023). Thermal Protection Materials Branch – Testing and Fabrication. Available at: https://www.nasa.gov/thermal-protection-materials-branch-testing-and-fabrication/.
18. Paglia L., Genova V., Tirillò J., Bartuli C., Simone A., Pulci G., Marra F. (2021). Design of New Carbon‑Phenolic Ablators: Manufacturing, Plasma Wind Tunnel Tests and Finite Element Model Rebuilding. Applied Composite Materials, no. 28, pp. 1675–1695. Available at: https://doi.org/10.1007/s 10443-021-09925-8.
19. Piacquadio S., Pridöhl D., Henkel N., Bergström R., Zamprotta A., Dafnis A., Schröder K.-U. (2023) Comprehensive Comparison of Different Integrated Thermal Protection Systems with Ablative Materials for Load-Bearing Components of Reusable Launch Vehicles. Aerospace, no. 10. 30 p. Available at: https://doi.org/10.3390/aerospace10030319.
20. Plisetska E. I. & Lobunko O. P. (2023). Thermal analysis and protection of modern aerospace systems. XV International Conference of Students and Young Scientists «Intelligence. Integration. Reliability». Kyiv, Ukraine, 7–8 December 2023.
21. Reusability for European strategic space launchers – technologies and operation maturation including flight test demonstration. European Union Framework Program for Research and Innovation “Horizon Europe” (2021–2027).
22. Riccio A., Raimondo F., Sellitto A., Carandente V., Scigliano R., Tescione D. (2017). Optimum design of ablative thermal protection systems for atmospheric entry vehicles. Applied Thermal Engineering, no. 119. P. 541–552. Available at: https://doi.org/10.1016/j.applthermaleng.2017.03.053.
23. Rodmann J., Miller A., Traud M., Bunte K. D., & Millinger M. (2021). Micrometeoroid Impact Risk Assessment for Interplanetary Missions. 8th European Conference on Space Debris, ESA Space Debris Office.
24. Xu Q., Li S., Meng Y. (2021). Optimization and Re-Design of Integrated Thermal Protection Systems Considering Thermo-Mechanical Performance. Applied Sciences, no. 11. 21 p. Available at: https://doi.org/ 10.3390/app11156916.
25. Zhou C, Zhijin W., Zhi J., Kretov A. (2017) Aerothermodynamic Optimization of Aerospace Plane Airfoil Leading Edge. Journal of Aerospace Technology and Management, no. 9. P. 503–509. Available at: https://doi.org/10.5028/jatm.v9i4.820.

 

References:
1. Ahuja A. (2020). Active Thermal Protection System for a Reusable Launch Vehicle: A Conceptual Design. Delft: Delft University of Technology, 98 p.
2. Al-Jothery H. K. M., Albarody T. M. B., Yusoff P. S. M., Abdullah M. A., Hussein A. R. (2019). A review of ultra-high temperature materials for thermal protection system. IOP Conference Series: Materials Science and Engineering. Symposium on Energy Systems 2019. Kuantan, Malaysia, 1–2 October 2019.
3. Asgar A., Raj S. N. S, Varghese J. T. (2019) Ablative Heating Technology in Hypersonic Re-entry Vehicles and Cruise. Aircrafts International Journal of Recent Technology and Engineering, no. 8, pp. 3007–3014. Available at: https://doi.org/10.35940/ijrte.C4844.098319.
4. Barcena J., Garmendia I., Triantou K., et al (2017). Infra-red and vibration tests of hybridablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems. Acta Astronaut 134. Р. 85–97.
6. Brociek R., Hetmaniok E., Słota D. (2022). Reconstruction of aerothermal heating for the thermal protection system of a reusable launch vehicle. Applied Thermal Engineering, no. 219. 13 p. Available at: https://doi.org/10.1016/j.applthermaleng.2022.119405
7. Dang D. Z. (2021). Thermal and Structural Response Modeling of a Woven Thermal Protection System. Ann Arbor : The University of Michigan. 149 p.
8. Di Fiore F., Maggiore P., Mainini L. (2021). Multifidelity domain‑aware learning for the design of re‑entry vehicles. Structural and Multidisciplinary Optimization, no. 64, pp. 3017–3035. Available at: https://doi. org/10.1007/s00158-021-03037-4.
9. Gupta R. K. & Ramkumar P. (2015). Titanium Aluminides for Metallic Thermal Protection System of Reusable Space Transportation Vehicle: A Review. Frontiers in Aerospace Engineering, 4 (1). Available at: http://doi.org/10.12783/fae.2015.0401.02.
10. Iskra O., Lobunko D., Lobunko O. (2023). Research of mechanisms of destruction and protection complex thermodynamic systems. European Science, 1 (sge23–01), 60–77. Available at: https://doi.org/10.30890/ 2709-2313.2023-23-01-015.
11. Jascha Wilken, Steffen Callsen, Dennis Daub, Alexander Fischer, Martin Liebisch, Carolin Rauh, Thomas Reimer, Henning Scheufler, Martin Sippel (2022). Combined cryogenic insulation and thermal protection systems for reusable stages. 9th European conference for aeronautics and space sciences.
12. Junjie G., Jijun Y., Haitao H., Daiying D. (2019). Prediction of Heat Transfer Characteristics of the Carbonized Layer of Resin-Based Ablative Material Based on the Finite Element Method. International Journal of Aerospace Engineering. 14 p. Available at: https://doi.org/10.1155/2019/8142532.
13. Lobunko O. P. & Іskra О. O. (2023). Mathematical Modeling of the Thermal Conditions of Aerospace Products’ Protection Systems. Cherkasy, Ukraine, September 12–14, pp. 8–10.
14. Lobunko O. P. & Iskra O. O. (2023). Substantiation of the protection system’s configuration for the reusable spacecraft. Brussels, Belgium, 16–18 August 2023, pp. 189–194.
15. Lobunko O. & Iskra O. (2023) Substantiation of the protection systems’ technical outline for the aerospace objects. Scientific Journal of TNTU, no. 112, pp. 102–114. Available at: https://doi.org/10.33108/visnyk_ tntu2023.04.
16. Ma S., Zhang S., Wu J., Zhang Y., Chu W., Wang Q. (2023). Experimental Study on Active Thermal Protection for Electronic Devices Used in Deep – Downhole − Environment Exploration. Energies 2023, 16, 1231. Available at: https://doi.org/10.3390/en16031231.
16. Masayuki Naito, Satoshi Kodaira, Ryo Ogawara, Kenji Tobita and other (2020). Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 26, pp. 69–76.
17. National Aeronautics and Space Administration (2023). Thermal Protection Materials Branch – Testing and Fabrication. Available at: https://www.nasa.gov/thermal-protection-materials-branch-testing-and-fabrication/.
18. Paglia L., Genova V., Tirillò J., Bartuli C., Simone A., Pulci G., Marra F. (2021). Design of New Carbon‑Phenolic Ablators: Manufacturing, Plasma Wind Tunnel Tests and Finite Element Model Rebuilding. Applied Composite Materials, no. 28, pp. 1675–1695. Available at: https://doi.org/10.1007/s 10443-021-09925-8.
19. Piacquadio S., Pridöhl D., Henkel N., Bergström R., Zamprotta A., Dafnis A., Schröder K.-U. (2023) Comprehensive Comparison of Different Integrated Thermal Protection Systems with Ablative Materials for Load-Bearing Components of Reusable Launch Vehicles. Aerospace, no. 10. 30 p. Available at: https://doi.org/10.3390/aerospace10030319.
20. Plisetska E. I. & Lobunko O. P. (2023). Thermal analysis and protection of modern aerospace systems. XV International Conference of Students and Young Scientists «Intelligence. Integration. Reliability». Kyiv, Ukraine, 7–8 December 2023.
21. Reusability for European strategic space launchers – technologies and operation maturation including flight test demonstration. European Union Framework Program for Research and Innovation “Horizon Europe” (2021–2027).
22. Riccio A., Raimondo F., Sellitto A., Carandente V., Scigliano R., Tescione D. (2017). Optimum design of ablative thermal protection systems for atmospheric entry vehicles. Applied Thermal Engineering, no. 119. P. 541–552. Available at: https://doi.org/10.1016/j.applthermaleng.2017.03.053.
23. Rodmann J., Miller A., Traud M., Bunte K. D., & Millinger M. (2021). Micrometeoroid Impact Risk Assessment for Interplanetary Missions. 8th European Conference on Space Debris, ESA Space Debris Office.
24. Xu Q., Li S., Meng Y. (2021). Optimization and Re-Design of Integrated Thermal Protection Systems Considering Thermo-Mechanical Performance. Applied Sciences, no. 11. 21 p. Available at: https://doi.org/ 10.3390/app11156916.
25. Zhou C, Zhijin W., Zhi J., Kretov A. (2017) Aerothermodynamic Optimization of Aerospace Plane Airfoil Leading Edge. Journal of Aerospace Technology and Management, no. 9. P. 503–509. Available at: https://doi.org/10.5028/jatm.v9i4.820.

 

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.