logo logo


Improvement of equipment for plasma lubrication of gas-turbine engines and installations

НазваImprovement of equipment for plasma lubrication of gas-turbine engines and installations
Назва англійськоюImprovement of equipment for plasma lubrication of gas-turbine engines and installations
АвториVolodymyr Lebedev (https://orcid.org./0000-0003-0391-6113); Serhiy Loi (https:/orcid.org/0000-0002-1936-6390); Oleksiy Khalimovskyy (https://orcid.org/0000-0003-3672-8530)
ПринадлежністьE.O. Paton Electric Welding Institute of National Academy of Sciences of Ukraine, Kyiv, Ukraine Kherson branch of Nikolaev Shipbuilding University named after. Admiral Makarov, Kherson, Ukraine National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
Бібліографічний описImprovement of equipment for plasma lubrication of gas-turbine engines and installations / Volodymyr Lebedev; Serhiy Loi; Oleksiy Khalimovskyy // Scientific Journal of TNTU. — Tern. : TNTU, 2019. — Vol 95. — No 3. — P. 86–96.
Bibliographic description:Lebedev V.; Loi S.; Khalimovskyy O. (2019) Improvement of equipment for plasma lubrication of gas-turbine engines and installations. Scientific Journal of TNTU (Tern.), vol 95, no 3, pp. 86–96.
DOI: https://doi.org/10.33108/visnyk_tntu2019.03.086
УДК

621.793.72

Ключові слова

plasma spraying, blade, gas turbine engine, installation, process, refinement, technique, technology.

New design solutions for equipment for plasma spraying of gas turbine engine blades and plants have been developed. The use of such equipment allows to expand the scope of its application to create optimal conditions for the transfer of material, which is poured on the work surface of the product. This improves the physical characteristics and structure of the spray layer. The basic directions of improvement of technology and technology of plasma spraying on the examples of a number of new effective developments are considered. The conclusion is made that multi-sectional designs of plasma torches are more effective than traditional solutions. Plasma spray equipment modernization is carried out for two main types of plasma torches: for air spraying and for spraying in a controlled atmosphere (in a vacuum). On the basis of the plasma torch PN-14M developed its advanced design to eliminate structural deficiencies. The proposed design solutions have made it possible to make the structure versatile in terms of the application environment. The modernized plasma torch has a relatively small flow of plasma-gas in operating modes. A specially designed nozzle for a plasma torch of the second type, which is used to spray in a controlled atmosphere, has improved its operational properties. An even supply of powder to the plasma torch is realized with the help of a new design. When sprayed in a controlled atmosphere, the powdered cavity provides uniform dispersion of powder for more than 40 microns. The use of the valve engine is proposed to reduce (absence) of the dipping of the powder. The research of the developed system of automatic control of the position of the shaft of the valve engine was carried out in the frequency range of the pulse signal of the task up to 20 Hz. The results of the mathematical modeling proved the possibility of using the valve engine in the pulse mode of its operation to control the dosage of the powder supply to the plasma torch and to control the work and installation displacements of the device manipulators for plasma spraying.

ISSN:2522-4433
Перелік літератури
  1. Budynovskyy S. A., Chubarov D. A., Matveev P. V. Sovremennye sposoby naneseniya teplozashchytnykh pokrytij na lopatky ha-zoturbynnykh dvyhateley (obzor). Avyatsyonnye materyaly i tekhnolohii. 2014. № S5. Р. 38–44. doi: 10.18577/2071-9140-2014-0-s5-38-44.
  2. Hryhor'ev S. N., Kovalev O. B., Kuz'myn V. Y., Mykhal'chenko A. A., Sokolova N. H., Fomyn V. M. Novye vozmozhnosty tekhnolohii plazmennoho napyleniya iznosostojkikh pokrytij. Trenije i iznos. 2013. T. 34. № 3. Р. 221–226.
  3. Pfender L. F. Trends in Thermal Plasma Technology. Thermal Plasma Torches and Technologies / еdited by Solonenko O. P. Cambridge International Science Publishing. Plasma Torches. Basic Studies and Design. 2003. Vol. 1. P. 20–41.
  4. Lebedev V. A., Loi S. A. Modernyzatsyia plazmotrona dlia napylenija na vozdukhe i v kontrolyruemoj atmosfere (v vakkume). Visnyk Natsionalnoho tekhnichnoho universytetu “KhIII”. Seriia: Novi rishchennia v suchasnykh tekhnolohiiakh. № 10. 2019. Р. 21–29.
  5. Kuzmyn V. Y., Kartaev E. V., Serhachev D. V., Kornyenko E. E. Plazmennoe napylenije poroshkovykh pokrytji prs hazodynamycheskoi fokusirovke dispersnoj fazy. Aktualnye problemy v mashynostroenii: materyaly 1-j mezhdunarodnoj nauchno-prakticheskoi konferentzii / pod red. V. Yu. Skyby. Novosibirsk: Izd-vo NHTU, 2014. Р. 482–488.
  6. Mykheev A. E., Girn A. V., Ravodina D. V., Jakubovych Y. O. Plazmotron dlia nanesenia pokrytij iz tuhoplavkikh dyspersnykh materialov. Sybyrskij zhurnal nauky i tekhnolohii. 2018. T. 19. № 2.
    Р. 365–372.
  7. Ignatyk A. V., Ivanov A. Y., Smirnov A. N., Shorikov V. S. Plazmennye ustroistva dlia nanesenyia pokrytij raznoho funktzionalnogo naznachenija. Aktualnyje problemy aviatzii i kosmonavtiki. Tekhnicheskije nauki. 2010. Р. 10–11.
  8. Guessasma S., Montavon G., Coddet C. Modeling of the APS Plasma Spray ProcessUsing Artificial Neural Networks: Basis, Requirements andan Example. Computational Materials Science. 2004.
    Vol. 29 (3). P. 315–333. doi: 10.1016/j.commatsci.2003.10.007.
  9. Romakin N. E. Mashyny nepreryvnoho transporta: ucheb. posobiee dlia stud. vyssh. ucheb. Zavedenij. M.: Akademia, 2008. 432 р.
  10. Paton B. E. Problemy kompleksnoj avtomatizatzii svarochnoho proizvodstva. Avtomaticheskaija svarka. 1981. № 1. Р. 3–9.
  11. Ekelof B. Adaptiv malti-run submerged-are technology. Svetsaren. 1998. № 1. P. 3–6.
  12. Leonhard W. Control of Electrical Drives, 2nd edition. Springer. Berlin, 1996.
  13. Lebedev V. A., Hulyj M. V. Bystrodeistvujushchijventilnyj elektroprivod dlia oborudovanija mekhanysirovannoi duhovoj svarki. Mekhatronika. Avtomatisazia. Upravlenie. 2014. № 6. Р. 47–51.
  14. Kuzmin V. I. et al. Comparison of Thermophisical and Optical Methods of Temperature Distribution Measurements in Flow of Plasmatron with Interelectrode Inserts. Изв. вузов. Физика. 2007. Т. 50, № 9.
    С. 85–88.
  15. Lebedev V. A., Loi S. A. Modelirovanije stoikosti plazmennoho napylenija lopatok hazoturbinnykh dvihatelej i ustanovok. Model question of production and repair in in-dustry. Materials of the 19th International Scientific fnd Technical Seminar. (February 18–23, Kosice, Slovak Republic). Р. 97–99.
References:
  1. Budynovskyy S. A., Chubarov D. A., Matveev P. V. Sovremennye sposoby naneseniya teplozashchytnykh pokrytij na lopatky ha-zoturbynnykh dvyhateley (obzor). Avyatsyonnye materyaly i tekhnolohii. 2014. № S5. Р. 38–44. doi: 10.18577/2071-9140-2014-0-s5-38-44.
  2. Hryhor'ev S. N., Kovalev O. B., Kuz'myn V. Y., Mykhal'chenko A. A., Sokolova N. H., Fomyn V. M. Novye vozmozhnosty tekhnolohii plazmennoho napyleniya iznosostojkikh pokrytij. Trenije i iznos. 2013. T. 34. № 3. Р. 221–226.
  3. Pfender L. F. Trends in Thermal Plasma Technology. Thermal Plasma Torches and Technologies / еdited by Solonenko O. P. Cambridge International Science Publishing. Plasma Torches. Basic Studies and Design. 2003. Vol. 1. P. 20–41.
  4. Lebedev V. A., Loi S. A. Modernyzatsyia plazmotrona dlia napylenija na vozdukhe i v kontrolyruemoj atmosfere (v vakkume). Visnyk Natsionalnoho tekhnichnoho universytetu “KhIII”. Seriia: Novi rishchennia v suchasnykh tekhnolohiiakh. № 10. 2019. Р. 21–29.
  5. Kuzmyn V. Y., Kartaev E. V., Serhachev D. V., Kornyenko E. E. Plazmennoe napylenije poroshkovykh pokrytji prs hazodynamycheskoi fokusirovke dispersnoj fazy. Aktualnye problemy v mashynostroenii: materyaly 1-j mezhdunarodnoj nauchno-prakticheskoi konferentzii / pod red. V. Yu. Skyby. Novosibirsk: Izd-vo NHTU, 2014. Р. 482–488.
  6. Mykheev A. E., Girn A. V., Ravodina D. V., Jakubovych Y. O. Plazmotron dlia nanesenia pokrytij iz tuhoplavkikh dyspersnykh materialov. Sybyrskij zhurnal nauky i tekhnolohii. 2018. T. 19. № 2.
    Р. 365–372.
  7. Ignatyk A. V., Ivanov A. Y., Smirnov A. N., Shorikov V. S. Plazmennye ustroistva dlia nanesenyia pokrytij raznoho funktzionalnogo naznachenija. Aktualnyje problemy aviatzii i kosmonavtiki. Tekhnicheskije nauki. 2010. Р. 10–11.
  8. Guessasma S., Montavon G., Coddet C. Modeling of the APS Plasma Spray ProcessUsing Artificial Neural Networks: Basis, Requirements andan Example. Computational Materials Science. 2004.
    Vol. 29 (3). P. 315–333. doi: 10.1016/j.commatsci.2003.10.007.
  9. Romakin N. E. Mashyny nepreryvnoho transporta: ucheb. posobiee dlia stud. vyssh. ucheb. Zavedenij. M.: Akademia, 2008. 432 р.
  10. Paton B. E. Problemy kompleksnoj avtomatizatzii svarochnoho proizvodstva. Avtomaticheskaija svarka. 1981. № 1. Р. 3–9.
  11. Ekelof B. Adaptiv malti-run submerged-are technology. Svetsaren. 1998. № 1. P. 3–6.
  12. Leonhard W. Control of Electrical Drives, 2nd edition. Springer. Berlin, 1996.
  13. Lebedev V. A., Hulyj M. V. Bystrodeistvujushchijventilnyj elektroprivod dlia oborudovanija mekhanysirovannoi duhovoj svarki. Mekhatronika. Avtomatisazia. Upravlenie. 2014. № 6. Р. 47–51.
  14. Kuzmin V. I. et al. Comparison of Thermophisical and Optical Methods of Temperature Distribution Measurements in Flow of Plasmatron with Interelectrode Inserts. Изв. вузов. Физика. 2007. Т. 50, № 9.
    С. 85–88.
  15. Lebedev V. A., Loi S. A. Modelirovanije stoikosti plazmennoho napylenija lopatok hazoturbinnykh dvihatelej i ustanovok. Model question of production and repair in in-dustry. Materials of the 19th International Scientific fnd Technical Seminar. (February 18–23, Kosice, Slovak Republic). Р. 97–99.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.