logo logo


High-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification

НазваHigh-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification
Назва англійськоюHigh-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification
АвториMykhaylo Petryk; Oleksandr Khimich; Dmytro Mykhalyk; Igor Boyko; Vasil Kovbashyn
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine, Glushkov Institute of Cybernetics of NAS of Ukraine, Kyiv, Ukraine
Бібліографічний описHigh-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification / Mykhaylo Petryk; Oleksandr Khimich; Dmytro Mykhalyk; Igor Boyko; Vasil Kovbashyn // Scientific Journal of TNTU. — Tern. : TNTU, 2019. — Vol 95. — No 3. — P. 139–145.
Bibliographic description:Petryk M.; Khimich O.; Mykhalyk D.; Boyko I.; Kovbashyn V. (2019) High-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification. Scientific Journal of TNTU (Tern.), vol 95, no 3, pp. 139–145.
DOI: https://doi.org/10.33108/visnyk_tntu2019.03.139
УДК

519.7

Ключові слова

high-performance computing technologies, nanoporous systems with feedbacks, adsorption and desorption of gases modelling; Heaviside’s operational method; Laplace integral transform.

The paper deals with high-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification. Analytical solutions to the problem of non-isothermal adsorption and desorption are based on Heaviside’s operational method and Laplace integral transform, but the development of calculations is quite original. Experimental and modeling distributions of moisture and temperatures of gas at the inlet and outlet of the silica beds for each adsorption – desorption phase at different times are presented. The distribution of moisture within the beds for the full dehydration – regeneration cycle is determined.

ISSN:2522-4433
Перелік літератури
  1. Unger N., Bond T. C., Wang J. S., Koch D. M., Menon S., Shindell D. T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci., 2010. 107 (8). Р. 3382–7.
  2. Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. URL: europa.eu/legislation_summaries/environment/air_pollution/l28186_es.htm (accessed 5.06.2010).
  3. Gandhidasan P., Al-Farayedhi AA, Al-Mubarak AA. Dehydration of natural gas using solid desiccants. Energy 2001, 26. P. 855–868.
  4. Karimi A., Abdi MA. Selective dehydration of high-pressure natural gas using supersonic nozzles. Chemical Engineering and Processing. 2009. 48. P. 560–568.
  5. Netusil M., Pavel D. Comparison of three methods for natural gas dehydration. Journal of Natural Gas Chemistry. 2011. 20 (5). P. 471–476.
  6. Puertolas B., Navarro M. V., Lopez J. M., Murillo R., Mastral A. M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. 86. P. 127–136.
  7. Petryk M., Khimitch A., Petryk M. M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239.
    P. 1324–1330.
  8. Sergienko I., Petryk M., Khimith O. N., Mykhalyk D., Leclerc S., Fraissard J. Mathematical Modelling of Diffusion Process in Microporous Media (Numerical analysis and application). National Academy of Sciences of Ukraine. Kyiv, 2014. 196 p. [In Ukrainian].
  9. Lavrentiev M. A., Shabat B. V. Methods of theory of functions of a complex variable. M.: Nauka, 1973. 736 p. [In Russian].
References:
  1. Unger N., Bond T. C., Wang J. S., Koch D. M., Menon S., Shindell D. T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci., 2010. 107 (8). Р. 3382–7.
  2. Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. URL: europa.eu/legislation_summaries/environment/air_pollution/l28186_es.htm (accessed 5.06.2010).
  3. Gandhidasan P., Al-Farayedhi AA, Al-Mubarak AA. Dehydration of natural gas using solid desiccants. Energy 2001, 26. P. 855–868.
  4. Karimi A., Abdi MA. Selective dehydration of high-pressure natural gas using supersonic nozzles. Chemical Engineering and Processing. 2009. 48. P. 560–568.
  5. Netusil M., Pavel D. Comparison of three methods for natural gas dehydration. Journal of Natural Gas Chemistry. 2011. 20 (5). P. 471–476.
  6. Puertolas B., Navarro M. V., Lopez J. M., Murillo R., Mastral A. M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. 86. P. 127–136.
  7. Petryk M., Khimitch A., Petryk M. M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239.
    P. 1324–1330.
  8. Sergienko I., Petryk M., Khimith O. N., Mykhalyk D., Leclerc S., Fraissard J. Mathematical Modelling of Diffusion Process in Microporous Media (Numerical analysis and application). National Academy of Sciences of UkraineKyiv, 2014. 196 p. [In Ukrainian].
  9. Lavrentiev M. A., Shabat B. V. Methods of theory of functions of a complex variable. M.: Nauka, 1973. 736 p. [In Russian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.