logo logo


Technique and some study results of shape memory alloy-based damping device functional parameters

НазваTechnique and some study results of shape memory alloy-based damping device functional parameters
Назва англійськоюTechnique and some study results of shape memory alloy-based damping device functional parameters
АвториVolodymyr Iasnii (https://orcid.org/0000-0002-5768-5288)
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описTechnique and some study results of shape memory alloy-based damping device functional parameters / Volodymyr Iasnii // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 97. — No 1. — P. 37–44.
Bibliographic description:Iasnii V. (2020) Technique and some study results of shape memory alloy-based damping device functional parameters. Scientific Journal of TNTU (Tern.), vol 97, no 1, pp. 37–44.
DOI: https://doi.org/10.33108/visnyk_tntu2020.01.037
УДК

539.3

Ключові слова

damping device, shape memory alloy, pseudoelasticity, dissipation specific energy, loss factor, cyclic loading.

A damping device based on the shape memory alloy which was designed and manufactured has been described in the paper. The device consists of two preliminary stretched wires made of pseudoelastic NiTi alloy and two compressed springs, that ensure the wires tension. The pre-stretched wires made of SMA provide the reliability of the system and good damping properties, and the preliminary compressed springs provide the possibility of alternating load and the restoring of the device to its original position after removing the external load. Due to the structural parameters and pseudoelastic effect the device under consideration provides the self-centering force and good damping properties, and can be used for dynamic loads reducing on building and engineering structures. To stabilize the functional properties of SMA wires the device had been loaded for 50 cycles at frequency of 0,5 Hz and displacement amplitude of 5 mm. The technique of experimental study of functional characteristics of damping device on the servohydraulic test machine equipped with the automatic control and measuring data recording system has been developed. Force, the device piston rod displacement and SMA wires strain had been measured during the test. The dissipation specific energy at 0,1 Hz frequency was found to be almost proportional to the displacement amplitude increase of the device piston rod but the loss factor was insensitive to the displacement amplitude change within the range from 3 to 9 mm. These results are important for further calculations and modeling of the behavior of the device under cyclic loading.

ISSN:2522-4433
Перелік літератури

1.   Auricchio F., Boatti E., Conti M. SMA Biomedical Applications. Shape Memory Alloy Engineering. 2015. 307–341 p.
2.   Morgan N. B. Medical shape memory alloy applications – The market and its products. Mater. Sci. Eng. A. 2004. Vol. 378. № 1–2 SPEC. ISS. P. 16–23.
3.   Pecora R., Dimino I. SMA for Aeronautics. Shape Mem. Alloy Eng. Butterworth-Heinemann, 2015. P. 275–304.
4.   Ming H. W., L. McD. S. Industrial applications for shape memory alloys. Proceedings of the International Conference on Shape Memory and Superelastic Technolgies, Pacific Grove, California. 2000. Vol. 19. P. 171–182.
5.   Hamid N. A. et al. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading. AIP Conf. Proc. 2018. Vol. 1958.
6.   Abdulridha A. et al. Behavior and modeling of superelastic shape memory alloy reinforced concrete beams. Eng. Struct. 2013. Vol. 49. P. 893–904.
7.   Morais J. et al. Shape Memory Alloy Based Dampers for Earthquake Response Mitigation. Procedia Struct. Integr. Elsevier. 2017. Vol. 5. P. 705–712.
8.   Dolce M. et al. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthq. Engng Struct. Dyn. 2005. Vol. 34. June. P. 1687–1717.
9.   Silva P., Almeida J., Guerreiro L. Semi-active Damping Device Based on Superelastic Shape Memory Alloys. Structures. Elsevier B. V., 2015. Vol. 3. P. 1–12.
10. Ozbulut O. E., Hurlebaus S., Desroches R. Seismic response control using shape memory alloys: A review. J. Intell. Mater. Syst. Struct. 2011. Vol. 22. № 14. P. 1531–1549.
11. Torra V. et al. The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations. Mater. Sci. Forum. 2012. Vol. 706–709. July 2015. P. 2020–2025.
12. YasnIy P. V., YasnIy V. P. Dempfuyuchiy pristrIy dlya transportuvannya dovgomIrnih konstruktsIy. Patent na korisnu model № 116582 vid 25.05.2017: pat. Byuleten №1 0 USA. Ukrayina, 2017.
13. Yasniy P. et al. Calculation of constructive parameters of SMA damper. Sci. J. TNTU. 2017. Vol. 88. № 4. P. 7–15.
14. Iasnii V. et al. Experimental study of pseudoelastic NiTi alloy under cyclic loading. Sci. J. TNTU. 2018. Vol. 92,. № 4. P. 7–12.
15. Iasnii V., Yasniy P. Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading : an experimental study. Acta Mech. Autom. 2019. Vol. 13. № 2. P. 5–9.
16. Soul H., Yawny A. Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires. Smart Mater. Struct. 2015. Vol. 24. № 7.
17. Iasnii V., Junga R. Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Mater. Sci. 2018. Vol. 54. № 3. P. 406–411.
18. ASTM F2516-14. Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. Book of Standards Volume: 13.02. 2014.
19. Yasniy P. V. et al. Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation. Fatigue Fract. Eng. Mater. Struct. 2005. Vol. 28. № 4. P. 391–397.

References:

1.   Auricchio F., Boatti E., Conti M. SMA Biomedical Applications. Shape Memory Alloy Engineering. 2015. 307–341 p.
2.   Morgan N. B. Medical shape memory alloy applications – The market and its products. Mater. Sci. Eng. A. 2004. Vol. 378. № 1–2 SPEC. ISS. P. 16–23.
3.   Pecora R., Dimino I. SMA for Aeronautics. Shape Mem. Alloy Eng. Butterworth-Heinemann, 2015. P. 275–304.
4.   Ming H. W., L. McD. S. Industrial applications for shape memory alloys. Proceedings of the International Conference on Shape Memory and Superelastic Technolgies, Pacific Grove, California. 2000. Vol. 19. P. 171–182.
5.   Hamid N. A. et al. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading. AIP Conf. Proc. 2018. Vol. 1958.
6.   Abdulridha A. et al. Behavior and modeling of superelastic shape memory alloy reinforced concrete beams. Eng. Struct. 2013. Vol. 49. P. 893–904.
7.   Morais J. et al. Shape Memory Alloy Based Dampers for Earthquake Response Mitigation. Procedia Struct. Integr. Elsevier. 2017. Vol. 5. P. 705–712.
8.   Dolce M. et al. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthq. Engng Struct. Dyn. 2005. Vol. 34. June. P. 1687–1717.
9.   Silva P., Almeida J., Guerreiro L. Semi-active Damping Device Based on Superelastic Shape Memory Alloys. Structures. Elsevier B. V., 2015. Vol. 3. P. 1–12.
10. Ozbulut O. E., Hurlebaus S., Desroches R. Seismic response control using shape memory alloys: A review. J. Intell. Mater. Syst. Struct. 2011. Vol. 22. № 14. P. 1531–1549.
11. Torra V. et al. The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations. Mater. Sci. Forum. 2012. Vol. 706–709. July 2015. P. 2020–2025.
12. YasnIy P. V., YasnIy V. P. Dempfuyuchiy pristrIy dlya transportuvannya dovgomIrnih konstruktsIy. Patent na korisnu model № 116582 vid 25.05.2017: pat. Byuleten №1 0 USA. Ukrayina, 2017.
13. Yasniy P. et al. Calculation of constructive parameters of SMA damper. Sci. J. TNTU. 2017. Vol. 88. № 4. P. 7–15.
14. Iasnii V. et al. Experimental study of pseudoelastic NiTi alloy under cyclic loading. Sci. J. TNTU. 2018. Vol. 92,. № 4. P. 7–12.
15. Iasnii V., Yasniy P. Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading : an experimental study. Acta Mech. Autom. 2019. Vol. 13. № 2. P. 5–9.
16. Soul H., Yawny A. Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires. Smart Mater. Struct. 2015. Vol. 24. № 7.
17. Iasnii V., Junga R. Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Mater. Sci. 2018. Vol. 54. № 3. P. 406–411.
18. ASTM F2516-14. Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. Book of Standards Volume: 13.02. 2014.
19. Yasniy P. V. et al. Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation. Fatigue Fract. Eng. Mater. Struct. 2005. Vol. 28. № 4. P. 391–397.

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.