logo logo


Automation of acoustic-emission diagnostic systems control processes

НазваAutomation of acoustic-emission diagnostic systems control processes
Назва англійськоюAutomation of acoustic-emission diagnostic systems control processes
АвториVolodymyr Lytvynenko; Irina Lur`e; Oleg Boskin; Ihor Okipnyi
ПринадлежністьKherson National Technical University, Kherson, Ukraine Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описAutomation of acoustic-emission diagnostic systems control processes / Volodymyr Lytvynenko; Irina Lur`e; Oleg Boskin; Ihor Okipnyi // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 97. — No 1. — P. 88–96.
Bibliographic description:Lytvynenko V.; Lur`e I.; Boskin O.; Okipnyi I. (2020) Automation of acoustic-emission diagnostic systems control processes. Scientific Journal of TNTU (Tern.), vol 97, no 1, pp. 88–96.
DOI: https://doi.org/10.33108/visnyk_tntu2020.01.088
УДК

667.64:678.02

Ключові слова

acoustic emission, automation, information parameters, identification, control.

The role and place of acoustic emission in the system of technical diagnostics of metal products is determined. The properties of information-measuring systems of acoustic-emission diagnostics are analyzed. It is emphasized on the necessity of solving the main task of acoustic emission systems control – restoration of information on the source of acoustic signals by the measured values of characteristics of acoustic signals at the output. Detailing of information technologies of measurement automation, identification and control is described. Structural diagrams of a priori information of the subject field and characteristics of the components of the acoustic-emission diagnostics hardware are presented. The characteristic features and requirements for the design and operation of individual blocks of the acoustic emission diagnostic system are considered. Algorithms for finding operators in dynamic processes of diagnostics and determining the time of arrival of an acoustic-emission signal are developed. The stages of automated acoustic emission diagnostics are specified, which are connected with the creation of multichannel systems, the study of the phenomenon of acoustic emission in different deformation conditions, the regularities of changing the acoustic emission signals in the process of damage accumulation. The directions of automation of the processes of control of acoustic-emission systems of technical diagnostics, which are aimed at the detection and indication of acoustic emission signals, their amplification, frequency filtering, discrimination, by determining the threshold level of the registered signals and determining the degree of conformity of the result of diagnostics by the criteria of similarity. The use of automation equipment for the control of acoustic emission systems significantly reduces the time of diagnostic work and saves money spent on their implementation by decommissioning the equipment.

ISSN:2522-4433
Перелік літератури
  1. Marasanov V. V., Sharko A. V., Kobersky V. V., Sharko A. A. Informative parameters and acoustic emission control schemes. Problems of information technology. 2016. No. 01 (019). Р. 182–191.
  2. Papirov I. I., Stoev P. I. Detection and study of acoustic emission effects during plastic deformation of steels in a magnetic field. Dopovіdі National Academy of Sciences of Ukraine. 2014. No. 1. P. 81–89.
  3. Nedoseka A. Ya., Nedoseka S. A., Markasheva L. I., Kushnareva U. S. On the recognition of changes in the structure of materials during destruction according to acoustic emission data. Technical diagnostics and non-destructive testing. 2016. No. 4. P. 9–13.
  4. Pochapskyy Y., Klym B., Melnyk N. Mathematical model and informative parameters of the magnetoelastic acoustic emission signal. Scientific Journal of TNTU. 2019. Vol. 94.No. 2. Р. 37–50.
  5. Luchko J., Ivanyk E. Diagnostics of the main gas pipelines and assessment of their residual life under the conditions of long-term operation. Scientific Journal of TNTU. 2017. Vol. 87. No. 3. Р. 48–63.
  6. Ivanov V. I., Barat V. A. Acoustic emission diagnostics: reference book. M.: Publishing house «Spectrum», 2017. 368 р.
  7. Li H., Wang W., Huang P., Li Q. Fault diagnosis of rolling bearing using symmetrized dot pattern and density-based clustering. Measurement: Journal of the International Measurement Confederation. 2020. № 107293. Р. 152.
  8. Gnevko A., Zubov O., Graizon S., Mukomelo M., and Kobzev V. Assessment of the technical condition of objects operating under pressure with limited access to the surface using the acoustic emission method. Scientific Bulletin of MGTU GA. 2015. № 2017. P. 9–16. [Іn Russian].
  9. Zhao X., Jia M., Lin M. Deep Laplacian Auto-encoder and its application into imbalanced fault diagnosis of rotating machinery. Measurement: Journal of the International Measurement Confederation. 2020.
    № 107320. Р. 152.
  10. Surace C., Bovsunovsky A. The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mechanical Systems and Signal Processing. 2020. № 106523. Р. 136.
  11. Paton B., Lobanov L., Nedosek A., Nedosek S., Gurzd A., Yaremenko M. Experience of IEE Paton NAS of Ukraine in the field of acoustic emission control. Technical diagnostics and non-destructive control. 2012. № 1. P. 7–22. [Іn Russian].
  12. Devin L., Rychev S., Correlation model of acoustic emission at fine diamond turning. Superhard materials. 2017. № 1. P. 56–65. [Іn Russian].
  13. Kuzmin A., Automation of engineering and technical diagnostics of high-rise buildings on the basis of complexing of methods and means of non-destructive control. Technospheric safety technology. 2008. № 5. P. 7–12. [Іn Russian].
  14. Ovcharuk V., Pursiev Yu. Registration and processing of acoustic emission information in multichannel systems. Khabarovsk from the Pacific State University. 2016. Р. 116. [Іn Russian].
  15. Luzina N. Analysis of the result of control of technical products by the method of acoustic emission. Scientific Bulletin of St. Petersburg State University. 2011. № 3 (73). P. 78–84. [Іn Russian].
References:
  1. Marasanov V. V., Sharko A. V., Kobersky V. V., Sharko A. A. Informative parameters and acoustic emission control schemes. Problems of information technology. 2016. No. 01 (019). Р. 182–191.
  2. Papirov I. I., Stoev P. I. Detection and study of acoustic emission effects during plastic deformation of steels in a magnetic field. Dopovіdі National Academy of Sciences of Ukraine. 2014. No. 1. P. 81–89.
  3. Nedoseka A. Ya., Nedoseka S. A., Markasheva L. I., Kushnareva U. S. On the recognition of changes in the structure of materials during destruction according to acoustic emission data. Technical diagnostics and non-destructive testing. 2016. No. 4. P. 9–13.
  4. Pochapskyy Y., Klym B., Melnyk N. Mathematical model and informative parameters of the magnetoelastic acoustic emission signal. Scientific Journal of TNTU. 2019. Vol. 94.No. 2. Р. 37–50.
  5. Luchko J., Ivanyk E. Diagnostics of the main gas pipelines and assessment of their residual life under the conditions of long-term operation. Scientific Journal of TNTU. 2017. Vol. 87. No. 3. Р. 48–63.
  6. Ivanov V. I., Barat V. A. Acoustic emission diagnostics: reference book. M.: Publishing house «Spectrum», 2017. 368 р.
  7. Li H., Wang W., Huang P., Li Q. Fault diagnosis of rolling bearing using symmetrized dot pattern and density-based clustering. Measurement: Journal of the International Measurement Confederation. 2020. № 107293. Р. 152.
  8. Gnevko A., Zubov O., Graizon S., Mukomelo M., and Kobzev V. Assessment of the technical condition of objects operating under pressure with limited access to the surface using the acoustic emission method. Scientific Bulletin of MGTU GA. 2015. № 2017. P. 9–16. [Іn Russian].
  9. Zhao X., Jia M., Lin M. Deep Laplacian Auto-encoder and its application into imbalanced fault diagnosis of rotating machinery. Measurement: Journal of the International Measurement Confederation. 2020.
    № 107320. Р. 152.
  10. Surace C., Bovsunovsky A. The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mechanical Systems and Signal Processing. 2020. № 106523. Р. 136.
  11. Paton B., Lobanov L., Nedosek A., Nedosek S., Gurzd A., Yaremenko M. Experience of IEE Paton NAS of Ukraine in the field of acoustic emission control. Technical diagnostics and non-destructive control. 2012. № 1. P. 7–22. [Іn Russian].
  12. Devin L., Rychev S., Correlation model of acoustic emission at fine diamond turning. Superhard materials. 2017. № 1. P. 56–65. [Іn Russian].
  13. Kuzmin A., Automation of engineering and technical diagnostics of high-rise buildings on the basis of complexing of methods and means of non-destructive control. Technospheric safety technology. 2008. № 5. P. 7–12. [Іn Russian].
  14. Ovcharuk V., Pursiev Yu. Registration and processing of acoustic emission information in multichannel systems. Khabarovsk from the Pacific State University. 2016. Р. 116. [Іn Russian].
  15. Luzina N. Analysis of the result of control of technical products by the method of acoustic emission. Scientific Bulletin of St. Petersburg State University. 2011. № 3 (73). P. 78–84. [Іn Russian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.