logo logo


Comparative analysis of the quality of plastic products formed by DLP and FDM 3D printing technologies

НазваComparative analysis of the quality of plastic products formed by DLP and FDM 3D printing technologies
Назва англійськоюComparative analysis of the quality of plastic products formed by DLP and FDM 3D printing technologies
АвториOlha Masiuchok (https://orcid.org/0000-0002-3302-3079); Maksym Iurzhenko (http://orcid.org/0000-0002-5535-731X); Valeriy Demchenko (http://orcid.org/0000-0001-9146-8984); Mykola Korab (https://orcid.org/0000-0001-8030-1468)
ПринадлежністьE. O. Paton Electric Welding Institute of the NAS of Ukraine, Kyiv, Ukraine
Бібліографічний описComparative analysis of the quality of plastic products formed by DLP and FDM 3D printing technologies / Olha Masiuchok; Maksym Iurzhenko; Valeriy Demchenko; Mykola Korab // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 98. — No 2. — P. 40–48.
Bibliographic description:Masiuchok O.; Iurzhenko M.; Demchenko V.; Korab M. (2020) Comparative analysis of the quality of plastic products formed by DLP and FDM 3D printing technologies. Scientific Journal of TNTU (Tern.), vol 98, no 2, pp. 40–48.
DOI: https://doi.org/10.33108/visnyk_tntu2020.02.040
УДК

62-408.8: 621.9.015: 621.9.019

Ключові слова

3D printing, additive manufacturing, FDM technology, DLP technology, thermoplastic polymers, photopolymers, bioplastic.

3D printing is the innovative technology widely used in all developed countries of the world and opens up significant potential for its application in various areas of human activity. The features of 3D objects creation using two the most commonly used additive manufacturing technologies – fused deposition modeling (FDM) and stereolithography version (SLA) - Digital Light Processing (DLP) are considered in this paper. By these technologies application the samples at various 3D printing modes using polylactide biopolymer (PLA) as consumable material are created and investigations of their geometry, structure, and mechanical properties (interlayer strength and elongation up to material rupture) are carried out. On the basis of the obtained results the influence of the specified print parameters, such as the extreme admissible values of 3D products layers thickness for FDM and DLP technologies, on the formed samples quality is investigated.

ISSN:2522-4433
Перелік літератури
  1. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016. 28. P. 4449–4454.
  2. Salmi M, Paloheimo K-S, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Cranio Maxill Surg 2013. Volume 41, Issue 7. P. 603–609.
  3. URL: https://www.orgprint.com/wiki/3d-pechat/sfery-primenenija-3D-pechati.
  4. Ford, Sharon Additive Manufacturing Technology: Potential Implications for U.S. Manufacturing Competitiveness. Journal of International Commerce and Economics. Published electronically September 2014. URL: http://www.usitc.gov/journals.
  5. Синюк О. М. Визначення раціональних конструкційних параметрів пристроїв для переробки полімерів. Вісник ТНТУ. 2017. Том 85. № 1. С. 53–60.
  6. Стухляк П., Добротвор І., Митник М., Яструбчак О. Технологія нанесення захисних покриттів на основі оцінок характеристик структур епоксикомпозитів. Вісник ТНТУ. 2014. Том 75. № 3.
    С. 114–121.
  7. Вальтер А. В. Технологии аддитивного формообразования. Томск: Изд-во Томского политехнического университета, 2013. 171 с.
  8. Дьяченко В. А., Челпанов И. Б., Никифоров С. О., Хозонхонова Д. Д. Материалы и процессы аддитивных технологий (быстрое прототипирование). Улан-Удэ: Изд-во БНЦ СО РАН, 2015. 198 с.
  9. Ligon S. C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017. 117. P. 10212–10290.
  10. Turner BN, Strong R, Gold SA A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal. 2014. Vol. 20. Issue 3. P. 192–204.
  11. URL: http://3dtoday.ru/wiki/3dprint_basics/.
  12. Kazemi M., Rahimi A. Supports effect on tensile strength of the stereolithography parts. RapidPrototyping. J 2015. 21. P. 79–88.
  13. Jacobs PF. Rapid prototyping & manufacturing: fundamentals of stereolithography. Dearborn. MI:Society of Manufacturing Engineers. New York : McGraw-Hill. 1992.
  14. Zhang X., Jiang X, Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sensor Actuat A–Phys. 1999. P. 77–149.
  15. Gibson I., Rosen DW, Stucker B. Additive manufacturing technologies. New York: Springer. 2010.
  16. Зленко М. А., Нагайцев М. В., Довбыш В. М. Аддитивные технологии в машиностроении. Пособие для инженеров. М.: ГНЦ РФ ФГУП «НАМИ», 2015. 220 с.
  17. URL: https://www.semanticscholar.org/paper/Delta-DLP-3D-printing-with-large-size-Wu-Yi/474494 ebee101406df339c04d1721c92efd1c58f.
References:
  1. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016. 28. P. 4449–4454.
  2. Salmi M, Paloheimo K-S, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Cranio Maxill Surg 2013. Volume 41, Issue 7. P. 603–609.
  3. URL: https://www.orgprint.com/wiki/3d-pechat/sfery-primenenija-3D-pechati.
  4. Ford, Sharon Additive Manufacturing Technology: Potential Implications for U.S. Manufacturing Competitiveness. Journal of International Commerce and Economics. Published electronically September 2014. URL: http://www.usitc.gov/journals.
  5. Синюк О. М. Визначення раціональних конструкційних параметрів пристроїв для переробки полімерів. Вісник ТНТУ. 2017. Том 85. № 1. С. 53–60.
  6. Стухляк П., Добротвор І., Митник М., Яструбчак О. Технологія нанесення захисних покриттів на основі оцінок характеристик структур епоксикомпозитів. Вісник ТНТУ. 2014. Том 75. № 3.
    С. 114–121.
  7. Вальтер А. В. Технологии аддитивного формообразования. Томск: Изд-во Томского политехнического университета, 2013. 171 с.
  8. Дьяченко В. А., Челпанов И. Б., Никифоров С. О., Хозонхонова Д. Д. Материалы и процессы аддитивных технологий (быстрое прототипирование). Улан-Удэ: Изд-во БНЦ СО РАН, 2015. 198 с.
  9. Ligon S. C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017. 117. P. 10212–10290.
  10. Turner BN, Strong R, Gold SA A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal. 2014. Vol. 20. Issue 3. P. 192–204.
  11. URL: http://3dtoday.ru/wiki/3dprint_basics/.
  12. Kazemi M., Rahimi A. Supports effect on tensile strength of the stereolithography parts. RapidPrototyping. J 2015. 21. P. 79–88.
  13. Jacobs PF. Rapid prototyping & manufacturing: fundamentals of stereolithography. Dearborn. MI:Society of Manufacturing Engineers. New York : McGraw-Hill. 1992.
  14. Zhang X., Jiang X, Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sensor Actuat A–Phys. 1999. P. 77–149.
  15. Gibson I., Rosen DW, Stucker B. Additive manufacturing technologies. New York: Springer. 2010.
  16. Зленко М. А., Нагайцев М. В., Довбыш В. М. Аддитивные технологии в машиностроении. Пособие для инженеров. М.: ГНЦ РФ ФГУП «НАМИ», 2015. 220 с.
  17. URL: https://www.semanticscholar.org/paper/Delta-DLP-3D-printing-with-large-size-Wu-Yi/474494 ebee101406df339c04d1721c92efd1c58f.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.