logo logo


Control system simulation by modular uninterruptible power supply unit with adaptive regulation function

НазваControl system simulation by modular uninterruptible power supply unit with adaptive regulation function
Назва англійськоюControl system simulation by modular uninterruptible power supply unit with adaptive regulation function
АвториAndriy Palamar (https://orcid.org/0000-0003-2162-9011)
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описControl system simulation by modular uninterruptible power supply unit with adaptive regulation function / Andriy Palamar // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 98. — No 2. — P. 129–136.
Bibliographic description:Palamar A. (2020) Control system simulation by modular uninterruptible power supply unit with adaptive regulation function. Scientific Journal of TNTU (Tern.), vol 98, no 2, pp. 129–136.
DOI: https://doi.org/10.33108/visnyk_tntu2020.02.129
УДК

004.94:681.518:621.311

Ключові слова

control system, uninterruptible power supply unit, simulation modeling.

The article deals with the problem of simulation modeling of rectifiers control system for the modular uninterruptible DC power supply unit in order to increase energy efficiency of its operation. This paper proposes a control logic algorithm to manage the process of switching the power modules of the UPS in the adaptive correction mode of the system nominal power. The main idea of the method is to implement the process of turning on/off the rectifiers to achieve the optimal value of their load factor and maintain its level in a certain set optimal range. Control system block diagram of the modular uninterruptible power supply is provided. Besides the central control module rectifiers, control units are introduced. They are responsible for realization of their on/off switching process and carries out control of their condition. In order to study the effectiveness of the developed algorithm, a computer model is created to describe the control logic of rectifiers management. To implement the simulation model, the software environment for visual modeling Simulink Matlab and the mathematical apparatus of the Stateflow component library are used. The developed simulation model has been tested and the simulation results are given in the research. The application of the developed algorithm allowed to increase the efficiency of the uninterruptible power supply by adjusting the load factor of the UPS in real time within a predetermined optimal range of values. The simulation results demonstrate the effectiveness of the developed simulation model of the control system in different operating modes.

ISSN:2522-4433
Перелік літератури
  1. Andriychuk V., Filyuk Y. Autonomous power supply system for outdoor illumination of residential areas in the territory of Ukraine. Scientific Journal of TNTU. 2018. Vol. 89. No. 1. P. 113–121.
  2. Grigorash O. V., Denisenko E. А., Chumak M. S. Sintez modulnykh sistem besperebojnogo ehlektrosnabzheniya povyshennoj nadyozhnosti. Politematicheskij setevoj ehlektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2015. Vol. 108. No. 4. P. 1–14. [In Russian].
  3. Dulepov D. E., Tyundina T. E. Kachestvo i nadezhnost ehlektrosnabzheniya v infokommunikatsionnykh sistemakh. Karelskij nauchnyj zhurnal. 2015. Vol. 11. No. 2. P. 115–120. [In Russian].
  4. Khorolskij V. Y., Ershov А. B., Efanov А. V. Kolichestvennoe opredelenie i sravnitelnaya otsenka nadezhnosti ehnergeticheskikh massivov. Elektrotekhnika. 2017. No. 8. P. 19–22. [In Russian].
  5. Talapko D. Telecom datacenter power infrastructure availability comparison of DC and AC UPS. International Telecommunications Energy Conference (INTELEC). 2012. P. 1–5.
  6. Gotovych V., Nazarevych O., Shcherbak L. Mathematical modeling of the regular-mode electric power supply and electric power consumption processes of the organization. Scientific Journal of TNTU. 2018. Vol. 91. No. 3. P. 134–142.
  7. Rasmussen N. Modelirovanie ehffektivnosti ehnergopotrebleniya v tsentrakh obrabotki dannykh. Zhurnal setevykh reshenij/LAN. 2007. No. 11. P. 40–47. [In Russian].
  8. Аbbasova T. S. Povyshenie ehnergeticheskoj ehffektivnosti tsentrov obrabotki dannykh dlya telekommunikatsionnykh sistem. Servis v Rossii i za rubezhom. 2009. No. 2. P. 1689–1699. [In Russian].
  9. Saro L., Zanettin C., Božič V. Reliability Analysis and Calculations for Different Power System Architectures based on Modular UPS. 2018 IEEE International Telecommunications Energy Conference (INTELEC). 2018. P. 1–8. URL: https://doi.org/10.1109/INTLEC.2018.8612341.
  10. Wang C., Member S., Jain P. A Quantitative Comparison and Evaluation of 48V DC and 380V DC Distribution Systems for Datacenters. IEEE 36th International Telecommunications Energy Conference (INTELEC). 2014. P. 1–7. URL: https://doi.org/10.1109/INTLEC.2014.6972112.
  11. Qi S., Sun W., Wu Y. Comparative Analysis on Different Architectures of Power Supply System for Data Center and Telecom Center. IEEE International Telecommunications Energy Conference (INTELEC). 2017. P. 26–29. URL: https://doi.org/10.1109/INTLEC.2017.8211672.
  12. Аbbasova T. S. Energeticheskaya ehffektivnost sistem ehlektropitaniya dlya vysokoskorostnykh telekommunikatsionnykh sistem. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy. 2009. Vol. 5. No. 2. P. 1–7. [In Russian].
  13. Palamar M., Pasternak Y., Palamar A. Doslidzhennia dynamichnykh pokhybok systemy pretsyziinoho keruvannia antenoiu z asynkhronnym elektropryvodom. Visnyk TNTU. 2014. Vol. 76. No. 4. P. 164–173. [In Ukrainian].
  14. Palamar A., Karpinskyy M., Vodovozov V. Design and implementation of a digital control and monitoring system for an AC/DC UPS. 7th International Conference-Workshop “Compatibility and Power Electronics” CPE 2011. Tallinn, Estonia. 2011. P. 173–177. URL: https://doi.org/10.1109/ CPE.2011.5942227.
  15. Palamar A., Karpinskyy M. Control of an Uninterruptible Power Supply in a DC Microgrid System. 10th International Symposium Symposium “Topical Problems in the Field of Electrical and Power Engineering” and “Doctoral School of Energy and Geotechnology II”. Pärnu, Estonia. 2011. P. 80–84.
References:
  1. Andriychuk V., Filyuk Y. Autonomous power supply system for outdoor illumination of residential areas in the territory of Ukraine. Scientific Journal of TNTU. 2018. Vol. 89. No. 1. P. 113–121.
  2. Grigorash O. V., Denisenko E. А., Chumak M. S. Sintez modulnykh sistem besperebojnogo ehlektrosnabzheniya povyshennoj nadyozhnosti. Politematicheskij setevoj ehlektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2015. Vol. 108. No. 4. P. 1–14. [In Russian].
  3. Dulepov D. E., Tyundina T. E. Kachestvo i nadezhnost ehlektrosnabzheniya v infokommunikatsionnykh sistemakh. Karelskij nauchnyj zhurnal. 2015. Vol. 11. No. 2. P. 115–120. [In Russian].
  4. Khorolskij V. Y., Ershov А. B., Efanov А. V. Kolichestvennoe opredelenie i sravnitelnaya otsenka nadezhnosti ehnergeticheskikh massivov. Elektrotekhnika. 2017. No. 8. P. 19–22. [In Russian].
  5. Talapko D. Telecom datacenter power infrastructure availability comparison of DC and AC UPS. International Telecommunications Energy Conference (INTELEC). 2012. P. 1–5.
  6. Gotovych V., Nazarevych O., Shcherbak L. Mathematical modeling of the regular-mode electric power supply and electric power consumption processes of the organization. Scientific Journal of TNTU. 2018. Vol. 91. No. 3. P. 134–142.
  7. Rasmussen N. Modelirovanie ehffektivnosti ehnergopotrebleniya v tsentrakh obrabotki dannykh. Zhurnal setevykh reshenij/LAN. 2007. No. 11. P. 40–47. [In Russian].
  8. Аbbasova T. S. Povyshenie ehnergeticheskoj ehffektivnosti tsentrov obrabotki dannykh dlya telekommunikatsionnykh sistem. Servis v Rossii i za rubezhom. 2009. No. 2. P. 1689–1699. [In Russian].
  9. Saro L., Zanettin C., Božič V. Reliability Analysis and Calculations for Different Power System Architectures based on Modular UPS. 2018 IEEE International Telecommunications Energy Conference (INTELEC). 2018. P. 1–8. URL: https://doi.org/10.1109/INTLEC.2018.8612341.
  10. Wang C., Member S., Jain P. A Quantitative Comparison and Evaluation of 48V DC and 380V DC Distribution Systems for Datacenters. IEEE 36th International Telecommunications Energy Conference (INTELEC). 2014. P. 1–7. URL: https://doi.org/10.1109/INTLEC.2014.6972112.
  11. Qi S., Sun W., Wu Y. Comparative Analysis on Different Architectures of Power Supply System for Data Center and Telecom Center. IEEE International Telecommunications Energy Conference (INTELEC). 2017. P. 26–29. URL: https://doi.org/10.1109/INTLEC.2017.8211672.
  12. Аbbasova T. S. Energeticheskaya ehffektivnost sistem ehlektropitaniya dlya vysokoskorostnykh telekommunikatsionnykh sistem. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy. 2009. Vol. 5. No. 2. P. 1–7. [In Russian].
  13. Palamar M., Pasternak Y., Palamar A. Doslidzhennia dynamichnykh pokhybok systemy pretsyziinoho keruvannia antenoiu z asynkhronnym elektropryvodom. Visnyk TNTU. 2014. Vol. 76. No. 4. P. 164–173. [In Ukrainian].
  14. Palamar A., Karpinskyy M., Vodovozov V. Design and implementation of a digital control and monitoring system for an AC/DC UPS. 7th International Conference-Workshop “Compatibility and Power Electronics” CPE 2011. Tallinn, Estonia. 2011. P. 173–177. URL: https://doi.org/10.1109/ CPE.2011.5942227.
  15. Palamar A., Karpinskyy M. Control of an Uninterruptible Power Supply in a DC Microgrid System. 10th International Symposium Symposium “Topical Problems in the Field of Electrical and Power Engineering” and “Doctoral School of Energy and Geotechnology II”. Pärnu, Estonia. 2011. P. 80–84.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.