logo logo


Analysis of accuracy control improvement methods of antenna system mechanisms based on stewart platform

НазваAnalysis of accuracy control improvement methods of antenna system mechanisms based on stewart platform
Назва англійськоюAnalysis of accuracy control improvement methods of antenna system mechanisms based on stewart platform
АвториMykhailo Palamar (https://orcid.org/0000-0002-8255-8491); Yuriy Pasternak (https://orcid.org/0000-0002-4228-5820); Vira Pasternak (https://orcid.org/0000-0003-3773-2558); Stepan Mashtalyar; Sergiy Shevchuk
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описAnalysis of accuracy control improvement methods of antenna system mechanisms based on stewart platform / Mykhailo Palamar; Yuriy Pasternak; Vira Pasternak; Stepan Mashtalyar; Sergiy Shevchuk // Scientific Journal of TNTU. — Tern.: TNTU, 2020. — Vol 100. — No 4. — P. 55–61.
Bibliographic description:Palamar M.; Pasternak Yu.; Pasternak V.; Mashtalyar S.; Shevchuk S. (2020) Analysis of accuracy control improvement methods of antenna system mechanisms based on stewart platform. Scientific Journal of TNTU (Tern.), vol 100, no 4, pp. 55–61.
УДК

681.51, 621.3.07

Ключові слова

hexapod, control systems, linear actuator, measurement error.

The purpose of this article is to identify and investigate the factors affecting the accuracy of the control mechanism. The analysis has shown that the accuracy of the structure control is also affected by the cardan connection, including those associated with its manufacturing error. The analysis made it possible to propose methods for improving the hexapod design and control accuracy. 

ISSN:2522-4433
Перелік літератури
  1. Dong Hwan Kim, Ji-Yoon Kang and Kyo-II Lee. Nonlinear Robust Control Design for a 6 DOF Parallel Robot. Received November 11, 1998.
  2. Davliakos, I., and Papadopoulos, E. Model-based control of a 6-dof electrohydraulic Stewart-Gough platform. Mechanism and Machine Theory. 2008. Vol. 43. No. 11. P. 1385–1400. URL: https://doi.org/ 10.1016/j.mechmachtheory.2007.12.002.
  3. Aliyev F. A., Larin V. B., Naumenko K. I., Suntsev V. N. Optimizatsiya lineynykh invariantnykh vo vremeni sistem upravleniya: monografiya; In-t matematiki AN USSR. K.: Nauk. dumka,1978. P. 327. [In Russian].
  4. Azarskov V. N., Blokhin L. N., Zhitetskiy L. S. Metodologiya konstruirovaniya optimal'nykh sistem stokhasticheskoy stabilizatsii: monografiya. K.: Knizhnoye izdatel'stvo NAU, 2006. P. 437.
  5. Zhukov Yu. A., Korotkov E. B., Moroz A. V. Kinematic administration of space destination hexapod // Intellektualnye sistemy, upravlenie i mekhatronika – 2018. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii, 2018, p. 67–71. [In Russian].
  6. Hamid D. Taghirad Parallel Robots. Mechanics and Control. CRC Press; 1 edition, by Taylor & Francis Group. 2013. P. 533.
  7. Zozulya V. Overview of methods of construction of control systems of parallel kinematic structure based on stuart platform (hexapod). Automation of Technological and Business Processes, 11 (3), 23–31. URL: https://doi.org/10.15673/atbp.v11i3.1504.
  8. Slobodzyan N. S. Otsenka tochnosti razomknutogo lineynogo privoda, dostizhimoy metodom kalibrovki i kompensatsii lineynogo teplovogo rasshireniya. Radiopromyishlennost. 2019. 29 (2). Р. 54–61. URL: https://doi.org/10.21778/2413-9599-2019-29-2-54-61.
  9. Zhukov Yu. A., Korotkov E. B., Moroz A. V. Simulation model hexapod control systems with linear stepper drives. Voprosy radioelektroniki. 2017. No. 7. P. 35–41. [In Russian].
  10. Mishev G., Rupetsov V., Paskaleva K, Dishliev S. Factors affecting the accuracy of positioning of rectilinear motion systems. XV International Scientific Conference “RE & IT – 2016”. Conf. paper, 2016. P. 67–70.
  11. Zhang Y., Pan S, Deng J. Methods for measuring and compensating ball screw error on multi-mode industrial CT scanning platform/ Proceedings of the 20165th International Conference on Measurement, Instrumentation and Automation, 2016.
  12. Andrievskiy B. R., Arsepev D. G., Zegzhda S. A., Kazunin D. V., Kuznetsov N. V., Leonov G. A., Tovstik P. E., Tovstik T. P., Yushkov M. P. Dinamika platform Styuarta: monografiya. Vestnik Sankt-Peterburgskogo universiteta, 2017. URL: https://cyberleninka.ru/article/n/dinamika-platformy-styuarta.
  13. Active disturbance rejection control of a parallel manipulator withself learning algorithm for a pulsating trajectory tracking task. A. Noshadi, M. Mailah Scie ntia Iranica B (2012) 19 (1), 132–141.
  14. Palamar M., Nakonetchnyi Yu., Apostol Yu., Strembicky M., Mashtalyar S. Design source errors analysis in the angle measure devices to the precision. Scientific Journal of TNTU. Tern.: TNTU, 2018. Vol. 92. No. 4. P. 98–103.
  15. Zelins’kyi I., Palamar M., Yavorska M. Optical system for control of antenna mirror shape. Scientific Journal of TNTU. Tern.: TNTU, 2019. Vol. 93. No. 1. P. 92–101.
References:
  1. Dong Hwan Kim, Ji-Yoon Kang and Kyo-II Lee. Nonlinear Robust Control Design for a 6 DOF Parallel Robot. Received November 11, 1998.
  2. Davliakos, I., and Papadopoulos, E. Model-based control of a 6-dof electrohydraulic Stewart-Gough platform. Mechanism and Machine Theory. 2008. Vol. 43. No. 11. P. 1385–1400. URL: https://doi.org/ 10.1016/j.mechmachtheory.2007.12.002.
  3. Aliyev F. A., Larin V. B., Naumenko K. I., Suntsev V. N. Optimizatsiya lineynykh invariantnykh vo vremeni sistem upravleniya: monografiya; In-t matematiki AN USSR. K.: Nauk. dumka,1978. P. 327. [In Russian].
  4. Azarskov V. N., Blokhin L. N., Zhitetskiy L. S. Metodologiya konstruirovaniya optimal'nykh sistem stokhasticheskoy stabilizatsii: monografiya. K.: Knizhnoye izdatel'stvo NAU, 2006. P. 437.
  5. Zhukov Yu. A., Korotkov E. B., Moroz A. V. Kinematic administration of space destination hexapod // Intellektualnye sistemy, upravlenie i mekhatronika – 2018. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii, 2018, p. 67–71. [In Russian].
  6. Hamid D. Taghirad Parallel Robots. Mechanics and Control. CRC Press; 1 edition, by Taylor & Francis Group. 2013. P. 533.
  7. Zozulya V. Overview of methods of construction of control systems of parallel kinematic structure based on stuart platform (hexapod). Automation of Technological and Business Processes, 11 (3), 23–31. URL: https://doi.org/10.15673/atbp.v11i3.1504.
  8. Slobodzyan N. S. Otsenka tochnosti razomknutogo lineynogo privoda, dostizhimoy metodom kalibrovki i kompensatsii lineynogo teplovogo rasshireniya. Radiopromyishlennost. 2019. 29 (2). Р. 54–61. URL: https://doi.org/10.21778/2413-9599-2019-29-2-54-61.
  9. Zhukov Yu. A., Korotkov E. B., Moroz A. V. Simulation model hexapod control systems with linear stepper drives. Voprosy radioelektroniki. 2017. No. 7. P. 35–41. [In Russian].
  10. Mishev G., Rupetsov V., Paskaleva K, Dishliev S. Factors affecting the accuracy of positioning of rectilinear motion systems. XV International Scientific Conference “RE & IT – 2016”. Conf. paper, 2016. P. 67–70.
  11. Zhang Y., Pan S, Deng J. Methods for measuring and compensating ball screw error on multi-mode industrial CT scanning platform/ Proceedings of the 20165th International Conference on Measurement, Instrumentation and Automation, 2016.
  12. Andrievskiy B. R., Arsepev D. G., Zegzhda S. A., Kazunin D. V., Kuznetsov N. V., Leonov G. A., Tovstik P. E., Tovstik T. P., Yushkov M. P. Dinamika platform Styuarta: monografiya. Vestnik Sankt-Peterburgskogo universiteta, 2017. URL: https://cyberleninka.ru/article/n/dinamika-platformy-styuarta.
  13. Active disturbance rejection control of a parallel manipulator withself learning algorithm for a pulsating trajectory tracking task. A. Noshadi, M. Mailah Scie ntia Iranica B (2012) 19 (1), 132–141.
  14. Palamar M., Nakonetchnyi Yu., Apostol Yu., Strembicky M., Mashtalyar S. Design source errors analysis in the angle measure devices to the precision. Scientific Journal of TNTU. Tern.: TNTU, 2018. Vol. 92. No. 4. P. 98–103.
  15. Zelins’kyi I., Palamar M., Yavorska M. Optical system for control of antenna mirror shape. Scientific Journal of TNTU. Tern.: TNTU, 2019. Vol. 93. No. 1. P. 92–101.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.