logo logo


Experimental studies of the inertial safety clutch for screw conveyor

НазваExperimental studies of the inertial safety clutch for screw conveyor
Назва англійськоюExperimental studies of the inertial safety clutch for screw conveyor
АвториVasyl Karetin; Petro Stukhlyak; Andrii Kurko
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описExperimental studies of the inertial safety clutch for screw conveyor / Vasyl Karetin; Petro Stukhlyak; Andrii Kurko // Scientific Journal of TNTU. — Tern.: TNTU, 2020. — Vol 100. — No 4. — P. 86–96.
Bibliographic description:Karetin V.; Stukhlyak P.; Kurko A. (2020) Experimental studies of the inertial safety clutch for screw conveyor. Scientific Journal of TNTU (Tern.), vol 100, no 4, pp. 86–96.
УДК

681.833.6

Ключові слова

kinematic scheme, imbalance, braking torque, rotational speed, gear ratio.

Devices that automatically shut down the working mechanisms when they are overloaded include friction, electromagnetic and other couplings. They allow adjusting the amount of allowable torque and automatically turning on the mechanisms when the overload stops. According to the results of the implementation of the planned factor experiments, the regression equations are obtained, which describe the change of the braking torque of the output shaft of the inertial safety clutch. The results of the study are the prerequisites for the development of methods for substantiating the rational parameters of the operation of inertial safety clutches.

ISSN:2522-4433
Перелік літератури
  1. Klendii O. M. Obgruntuvannia parametriv zapobizhnykh muft hvyntovykh konveieriv. Dys. kand. tekhn. nauk: 05.02.02. Ternopil, 2015. 178 р. [In Ukrainian].
  2. Leonov A. I. Inercionnye avtomaticheskie transformatory vrashhajushhego momenta. Moskva: Mashinostroenie, 1978, 224 р. [In Russian].
  3. Berselli G. et al., ‘Kinematic design and bond graph modeling of an inertia-type infinitely variable transmission,’ Proceedings of the ASME Design Engineering Technical Conference, 5, 2008, https://doi.org/10.1115/DETC2008-49875.
  4.  Benitez F. G. et al., ‘Infinitely Variable Transmission of Racheting Drive Type Based on One-Way Clutches,’ ASME. Journal of Mechanical Design. July 2004, 126 (4). Р. 673–682. https://doi.org/10.1115/1.1758258 =.
  5. Aliukov S. et al., ‘Analysis of Methods for Solution of Differential Equations of Motion of Inertial Continuously Variable Transmissions,’ SAE Technical Paper. 2017. https://doi.org/10.4271/2017-01-1105.
  6. Marchuk R., Komar R., Dubynyak T., Flonts O., Dynya V., Semeniv I. (2017) Substantiation of the parameters of hydraulic overload clutch. Scientific Journal of TNTU (Tern.). Vol. 86. No 2. Р. 59–66. [Іn English].
  7. Lutsiv I., Hevko I., Dubynyak T., Manzii O. (2017) Defining parameters of elastic-safety clutches for screw conveyers. Scientific Journal of TNTU (Tern.). Vol. 87. No 3. Р. 72–80. [Іn English].
  8. Liu K. et al.,’Dynamic Analysis of an Overrunning Clutch for the Pulse-Continuously-VariableSpeed Transmission,’ SAE Technical Paper, 1998, https://doi.org/10.4271/980827.
  9. Ince E. et al., ‘On the advantages of the new power-split infinitely variable transmission over conventional mechanical transmissions based on fuel consumption analysis. Journal of Cleaner Production, 2020. https://doi.org/10.1016/j.jclepro.2019.118795.
  10. Tsuchiya E. et al., ‘Formulation of intervibrator motion and development of a controller for a pulse-drive transmission,’ Mechanism and Machine Theory. Vol. 150. https://doi.org/10.1016/j.mechmachtheory. 2020.103880.
  11. Liang J. et al.,’ Simulation Study on Planetary Bevel Gear CVT System Based on Virtual Prototyping Technology,’ Applied Mechanics and Materials. 215–216. 1003–1008 doi: https://doi.org/10.4028/www.scientific.net/AMM.215-216.1003.
  12. Strilets O., Malashchenko V., Strilets V. (2020) Dynamic model of a closed-loop hydraulic system for speed control through gear differential. Scientific Journal of TNTU (Tern.). Vol 98. No. 2. Р. 91–98.
  13. Lunev V. A. Matematicheskoe modelirovanie i planirovanie jeksperimenta: Ucheb. posobie. SPb., 153 р. [In Russian].
  14. Spirin N. A. [i dr.] Metody planirovanija i obrabotki rezul'tatov inzhenernogo jeksperimenta: uchebnoe posobie / pod red. N. A. Spirina; GOU VPO UGTU – UPI. Ekaterinburg, 2015. 290 р. [In Russian].
  15. Karetin, V. (2020). Kinematic study of the standard layout circuit of the inertia module. Scientific Horizons, 07 (92), 104–111. Doi: 10.33249/2663-2144-2020-92-7- 104-111.
  16. Karetin V. M., Kurko A. M. Kompiuteryzovanyi stend dlia eksperymentalnoho doslidzhennia enerhetychnykh kharakterystyk inertsiinoho dyferentsialnoho transformatora momentu: zb. tez. dop. Materialy XXI naukovoi konferentsii TNTU imeni Ivana Puliuia. Ternopil, 2019. Р. 87. [In Ukrainian].
  17.  Karetin V. M., Kurko A. M., Mykhailyshyn M. S. Avtomatyzovana reiestratsiia parametriv potuzhnosti inertsiinoho dyferentsialnoho transformatoru momentu. Teoretychni ta prykladni aspekty radiotekhniky, pryladobuduvannia i kompiuternykh tekhnolohii: zb. tez. dop. Materialy IV Mizhnarodnoi naukovo-tekhnichnoi konferentsii. Ternopil, 2019. Р. 186–187. [In Ukrainian].
  18. Rogov V. A. Metodika i praktika tehnicheskih jeksperimentov: uchebnoe posobie. Moskva: Akademija, 2005. 288 р. [In Russian].
  19. Shashkov V. B. Prikladnoj regressionnyj analiz: uchebnoe posobie. Orenburg: GOU VPO OGU, 2003. 363 р. [In Russian].
  20. Sidnjaev N. I. Teorija planirovanija jeksperimenta i analiz statisticheskih dannyh. Uchebnoe posobie. M: Jurajt, 2015. 496 р. [In Russian].
  21. Halafjan A. Promyshlennaja statistika. Kontrol' kachestva, analiz processov, planirovanie jeksperimentov v pakete STATISTICA. M: Librokom, 2013. 384 р. [In Russian].
References:
  1. Klendii O. M. Obgruntuvannia parametriv zapobizhnykh muft hvyntovykh konveieriv. Dys. kand. tekhn. nauk: 05.02.02. Ternopil, 2015. 178 р. [In Ukrainian].
  2. Leonov A. I. Inercionnye avtomaticheskie transformatory vrashhajushhego momenta. Moskva: Mashinostroenie, 1978, 224 р. [In Russian].
  3. Berselli G. et al., ‘Kinematic design and bond graph modeling of an inertia-type infinitely variable transmission,’ Proceedings of the ASME Design Engineering Technical Conference, 5, 2008, https://doi.org/10.1115/DETC2008-49875.
  4.  Benitez F. G. et al., ‘Infinitely Variable Transmission of Racheting Drive Type Based on One-Way Clutches,’ ASME. Journal of Mechanical Design. July 2004, 126 (4). Р. 673–682. https://doi.org/10.1115/1.1758258 =.
  5. Aliukov S. et al., ‘Analysis of Methods for Solution of Differential Equations of Motion of Inertial Continuously Variable Transmissions,’ SAE Technical Paper. 2017. https://doi.org/10.4271/2017-01-1105.
  6. Marchuk R., Komar R., Dubynyak T., Flonts O., Dynya V., Semeniv I. (2017) Substantiation of the parameters of hydraulic overload clutch. Scientific Journal of TNTU (Tern.). Vol. 86. No 2. Р. 59–66. [Іn English].
  7. Lutsiv I., Hevko I., Dubynyak T., Manzii O. (2017) Defining parameters of elastic-safety clutches for screw conveyers. Scientific Journal of TNTU (Tern.). Vol. 87. No 3. Р. 72–80. [Іn English].
  8. Liu K. et al.,’Dynamic Analysis of an Overrunning Clutch for the Pulse-Continuously-VariableSpeed Transmission,’ SAE Technical Paper, 1998, https://doi.org/10.4271/980827.
  9. Ince E. et al., ‘On the advantages of the new power-split infinitely variable transmission over conventional mechanical transmissions based on fuel consumption analysis. Journal of Cleaner Production, 2020. https://doi.org/10.1016/j.jclepro.2019.118795.
  10. Tsuchiya E. et al., ‘Formulation of intervibrator motion and development of a controller for a pulse-drive transmission,’ Mechanism and Machine Theory. Vol. 150. https://doi.org/10.1016/j.mechmachtheory. 2020.103880.
  11. Liang J. et al.,’ Simulation Study on Planetary Bevel Gear CVT System Based on Virtual Prototyping Technology,’ Applied Mechanics and Materials. 215–216. 1003–1008 doi: https://doi.org/10.4028/www.scientific.net/AMM.215-216.1003.
  12. Strilets O., Malashchenko V., Strilets V. (2020) Dynamic model of a closed-loop hydraulic system for speed control through gear differential. Scientific Journal of TNTU (Tern.). Vol 98. No. 2. Р. 91–98.
  13. Lunev V. A. Matematicheskoe modelirovanie i planirovanie jeksperimenta: Ucheb. posobie. SPb., 153 р. [In Russian].
  14. Spirin N. A. [i dr.] Metody planirovanija i obrabotki rezul'tatov inzhenernogo jeksperimenta: uchebnoe posobie / pod red. N. A. Spirina; GOU VPO UGTU – UPI. Ekaterinburg, 2015. 290 р. [In Russian].
  15. Karetin, V. (2020). Kinematic study of the standard layout circuit of the inertia module. Scientific Horizons, 07 (92), 104–111. Doi: 10.33249/2663-2144-2020-92-7- 104-111.
  16. Karetin V. M., Kurko A. M. Kompiuteryzovanyi stend dlia eksperymentalnoho doslidzhennia enerhetychnykh kharakterystyk inertsiinoho dyferentsialnoho transformatora momentu: zb. tez. dop. Materialy XXI naukovoi konferentsii TNTU imeni Ivana Puliuia. Ternopil, 2019. Р. 87. [In Ukrainian].
  17.  Karetin V. M., Kurko A. M., Mykhailyshyn M. S. Avtomatyzovana reiestratsiia parametriv potuzhnosti inertsiinoho dyferentsialnoho transformatoru momentu. Teoretychni ta prykladni aspekty radiotekhniky, pryladobuduvannia i kompiuternykh tekhnolohii: zb. tez. dop. Materialy IV Mizhnarodnoi naukovo-tekhnichnoi konferentsii. Ternopil, 2019. Р. 186–187. [In Ukrainian].
  18. Rogov V. A. Metodika i praktika tehnicheskih jeksperimentov: uchebnoe posobie. Moskva: Akademija, 2005. 288 р. [In Russian].
  19. Shashkov V. B. Prikladnoj regressionnyj analiz: uchebnoe posobie. Orenburg: GOU VPO OGU, 2003. 363 р. [In Russian].
  20. Sidnjaev N. I. Teorija planirovanija jeksperimenta i analiz statisticheskih dannyh. Uchebnoe posobie. M: Jurajt, 2015. 496 р. [In Russian].
  21. Halafjan A. Promyshlennaja statistika. Kontrol' kachestva, analiz processov, planirovanie jeksperimentov v pakete STATISTICA. M: Librokom, 2013. 384 р. [In Russian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.