logo logo


Universal hardware and software system of signal converting for integrated sensor devices implementation

НазваUniversal hardware and software system of signal converting for integrated sensor devices implementation
Назва англійськоюUniversal hardware and software system of signal converting for integrated sensor devices implementation
АвториHryhorii Barylo (https://orcid.org/0000-0001-5749-9242); Oksana Boyko (http://orcid.org/0000-0002-8810-8969); Ihor Helzhynskyy (https://orcid.org/0000-0002-1931-6991); Roman Holyaka (http://orcid.org/0000-0002-7720-0372); Tetyana Marusenkova (http://orcid.org/0000-0003-4508-5725)
ПринадлежністьLviv Polytechnic National University, Lviv, Ukraine
Бібліографічний описUniversal hardware and software system of signal converting for integrated sensor devices implementation / Hryhorii Barylo; Oksana Boyko; Ihor Helzhynskyy; Roman Holyaka; Tetyana Marusenkova // Scientific Journal of TNTU. — Tern.: TNTU, 2020. — Vol 100. — No 4. — P. 106–117.
Bibliographic description:Barylo H.; Boyko O.; Helzhynskyy I.; Holyaka R.; Marusenkova T. (2020) Universal hardware and software system of signal converting for integrated sensor devices implementation. Scientific Journal of TNTU (Tern.), vol 100, no 4, pp. 106–117.
УДК

534.134

Ключові слова

sensor, Data Fusion, signal converter, programmable system.

The problem of developing a universal signal converter for the construction of integrated sensors in data fusion concept is solved. Considering the requirements of modern microcircuit technique, in particular for sensory devices of the Internet of Things, the signal path of the synthesized sensors is implemented based on PSoC of 5LP Family Cypress. The testing of the developed system was carried out in the process of realization the integrated sensors of thermal analysis, optoelectronics, magnetic tracking and impedance spectroscopy.

ISSN:2522-4433
Перелік літератури
  1. Mapa L. M., Golin A. F., Costa C. C., Bianchi R. F., The use of complex impedance spectroscopy measurements for improving strain sensor performance, Sensors and Actuators A: Physical, 293 (2019), 101–107.
  2. Charsley E., Price D., Hunter N., Gabbott P., Kett V., Gaisford S., Parkes G., Principles of thermal analysis and calorimetry, Royal society of chemistry, 2019.
  3. Prabowo B. A., Su L. C., Chang Y. F., Lai H. C., Chiu N. F., Liu K. C., Performance of white organic light-emitting diode for portable optical biosensor, Sensors and Actuators B: Chemical, 222 (2016), 1058–1065.
  4. Patonis P., Patias P., Tziavos I.N., Rossikopoulos D., A methodology for the performance evaluation of low-cost accelerometer and magnetometer sensors in geomatics applications, Geo-spatial information science, 21 (2018), 139–148.
  5. Stępień P., Pulka J., Serowik M., Białowiec A. Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis. Waste and Biomass Valorization, 10 (2019), No. 6, 1669–1677.
  6. Boyko O., Barylo G., Holyaka R., Hotra Z., Ilkanych K., Development of signal converter of thermal sensors based on combination of thermal and capacity research methods, Eastern-European Journal of Enterprise Technologies, 4/9 (2018), No. 94, 36–42.
  7. Boyko O., Holyaka R. Hotra Z., Fechan A., Ivanyuk H., Chaban O., Zyska T., Shedreyeva I. Functionally integrated sensors of thermal quantities based on optocoupler, Proceeding of SPIE, 10808 (2018), 1080812-1 – 1080812-6.
  8. Wang J., Pei L., Wang J., Ruan Z., Zheng J., Li J., Ning T. Magnetic field and temperature dual-parameter sensor based on magnetic fluid materials filled photonic crystal fiber. Optics Express, 28 (2020), No. 2, 1456–1471.
  9. Barylo G. I., Boyko O. V., Holyaka R. L., Marusenkova T. A., Prudyus I. N., Fabirovskyy S.E. Signal transducer of functionally integrated thermomagnetic sensors, Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, 76 (2019), 63–71.
  10. Xiao F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy, Information Fusion, 46 (2019), 23–32.
  11. Jaeger R. C., Blalock T. N. Microelectronic circuit design (5 th ed.). McGraw-Hill Education, (2016).
  12. Kolluri N., Klapperich C. M., Cabodi M. Towards lab-on-a-chip diagnostics for malaria elimination. Lab on a Chip, 18 (2018), No. 1, 75–94.
  13. Bassi A., Bauer M., Fiedler M., Kramp Th. Kranenburg R. V., Lange S., Meissner S. Enabling things to talk. Designing IoT solutions with the IoT Architectural Reference Model. Springer-Verlag GmbH, (2013).
  14. PSoC® 5LP: CY8C52LP Family Datasheet: Programmable System-on-Chip. http://www.cypress.com/ documentation/datasheets/psoc-5lp-cy8c52lp-family-datasheet-programmable-system-chip-psoc.
  15. Boyko O., Hotra O. Improvement of dynamic characteristics of thermoresistive transducers with controlled heating, Przegląd elektrotechniczny, 5 (2019), 110–113.
References:
  1. Mapa L. M., Golin A. F., Costa C. C., Bianchi R. F., The use of complex impedance spectroscopy measurements for improving strain sensor performance, Sensors and Actuators A: Physical, 293 (2019), 101–107.
  2. Charsley E., Price D., Hunter N., Gabbott P., Kett V., Gaisford S., Parkes G., Principles of thermal analysis and calorimetry, Royal society of chemistry, 2019.
  3. Prabowo B. A., Su L. C., Chang Y. F., Lai H. C., Chiu N. F., Liu K. C., Performance of white organic light-emitting diode for portable optical biosensor, Sensors and Actuators B: Chemical, 222 (2016), 1058–1065.
  4. Patonis P., Patias P., Tziavos I.N., Rossikopoulos D., A methodology for the performance evaluation of low-cost accelerometer and magnetometer sensors in geomatics applications, Geo-spatial information science, 21 (2018), 139–148.
  5. Stępień P., Pulka J., Serowik M., Białowiec A. Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis. Waste and Biomass Valorization, 10 (2019), No. 6, 1669–1677.
  6. Boyko O., Barylo G., Holyaka R., Hotra Z., Ilkanych K., Development of signal converter of thermal sensors based on combination of thermal and capacity research methods, Eastern-European Journal of Enterprise Technologies, 4/9 (2018), No. 94, 36–42.
  7. Boyko O., Holyaka R. Hotra Z., Fechan A., Ivanyuk H., Chaban O., Zyska T., Shedreyeva I. Functionally integrated sensors of thermal quantities based on optocoupler, Proceeding of SPIE, 10808 (2018), 1080812-1 – 1080812-6.
  8. Wang J., Pei L., Wang J., Ruan Z., Zheng J., Li J., Ning T. Magnetic field and temperature dual-parameter sensor based on magnetic fluid materials filled photonic crystal fiber. Optics Express, 28 (2020), No. 2, 1456–1471.
  9. Barylo G. I., Boyko O. V., Holyaka R. L., Marusenkova T. A., Prudyus I. N., Fabirovskyy S.E. Signal transducer of functionally integrated thermomagnetic sensors, Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, 76 (2019), 63–71.
  10. Xiao F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy, Information Fusion, 46 (2019), 23–32.
  11. Jaeger R. C., Blalock T. N. Microelectronic circuit design (5 th ed.). McGraw-Hill Education, (2016).
  12. Kolluri N., Klapperich C. M., Cabodi M. Towards lab-on-a-chip diagnostics for malaria elimination. Lab on a Chip, 18 (2018), No. 1, 75–94.
  13. Bassi A., Bauer M., Fiedler M., Kramp Th. Kranenburg R. V., Lange S., Meissner S. Enabling things to talk. Designing IoT solutions with the IoT Architectural Reference Model. Springer-Verlag GmbH, (2013).
  14. PSoC® 5LP: CY8C52LP Family Datasheet: Programmable System-on-Chip. http://www.cypress.com/ documentation/datasheets/psoc-5lp-cy8c52lp-family-datasheet-programmable-system-chip-psoc.
  15. Boyko O., Hotra O. Improvement of dynamic characteristics of thermoresistive transducers with controlled heating, Przegląd elektrotechniczny, 5 (2019), 110–113.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.