logo logo


Photoelastic research of threedimensional problems of fracture mechanics

НазваPhotoelastic research of threedimensional problems of fracture mechanics
Назва англійськоюPhotoelastic research of threedimensional problems of fracture mechanics
АвториYuri Rudyak; Mykola Pidgurskyi; Iryna Matvieieva; Valentyna Groza; Viкtor Sіchко; Volodymir Merzliuk; Ivan Pidgurskyi
ПринадлежністьI. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine National Aviation University, Kyiv, Ukraine V. О. Sukhomlynskyi National University of Mykolaiv, Mykolaiv, Ukraine Antonov Company, Kyiv, Ukraine
Бібліографічний описPhotoelastic research of threedimensional problems of fracture mechanics / Yuri Rudyak; Mykola Pidgurskyi; Iryna Matvieieva; Valentyna Groza; Viкtor Sіchко; Volodymir Merzliuk; Ivan Pidgurskyi // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 101. — No 1. — P. 5–14.
Bibliographic description:Rudyak Yu.; Pidgurskyi M.; Matvieieva I.; Groza V.; Sіchко V.; Merzliuk V.; Pidgurskyi I. (2021) Photoelastic research of threedimensional problems of fracture mechanics. Scientific Journal of TNTU (Tern.), vol 101, no 1, pp. 5–14.
DOI: https://doi.org/10.33108/visnyk_tntu2021.01.005
УДК

539.378

Ключові слова

fracture mechanics, stress intensity factor, photoelasticity, thin plates, thin shells.

A polarization-optical method for studying three-dimensional problems of fracture mechanics has been developed. The method was tested to determine the values of stress intensity factors (SIF) for surface cracks in thin plates and thin shells. The data of SIF values for surface cracks of different geometry, which are subjected to different loadings, are obtained. The experimentally obtained values of SIF were compared with those calculated analytically. The efficiency of the proposed technique for solving the corresponding problems of engineering practice is shown.

ISSN:2522-4433
Перелік літератури
  1. Timoshenko S., Goodier J. N. (2010) Theory of elasticity, 3rd edn. McGraw-Hill, New York City.
  2. Zhang X., Hao H., Shi Y., Cui J. (2015) The mechanical properties of polyvinyl butyral (PVB) at high strain rates. Constr. Build. Mater. 93, 404–415.
  3. Aben H., Guillemet C. (1993) Photoelasticity of Glass. Springer, Berlin.
  4. Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. (2016) Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 83, 536–573.
  5. Wang Q., Chen H., Wang Y., Sun J. (2013) Thermal shock effect on the glass thermal stress response and crack propagation. Procedia Eng. 62, 717–724.
  6. Fröling M., Persson K., Austrell P. E. (2014) A reduced model for the design of glass structures subjected to impact loads. Eng. Struct. 80, 53–60.
  7. Weller B., Wünsch J., Härth K. (2005) Experimental study on different interlayer materials for laminated glass. In: Conference: Glass Processing Days, Tampere, pp. 120–123.
  8. Rudyak Yu., Pidgurskyi M. Opticheskie metody mekhaniki tverdogo tela. Saarbrücken, Deutschland: LAP LAMBERT Academic Publishing, 2015. 128 р. [In Russian].
  9. Pidgurskyi M., Rudyak Yu. Pidgurskyi I. (2019). Research and Modeling of Stress-Strain State and Fracture Strength of Triplexes at Temperatures 293–213K. // Lecture Notes in Mechanical Engineering SerProceedings of the 7th International Conference on Fracture Fatigue and Wear., Belgium, Ghent University, 2018. P. 135–150.
  10. Rudyak Yu., Pidgurskyi M. Optychni eksperymentalno-rozrakhunkovi metody vyznachennia NDS ta hranychnoho stanu bahatosharovykh struktur z kontsentratoram. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu. № 1. 2014. Р. 11–21. [In Ukrainian].
References:
  1. Timoshenko S., Goodier J. N. (2010) Theory of elasticity, 3rd edn. McGraw-Hill, New York City.
  2. Zhang X., Hao H., Shi Y., Cui J. (2015) The mechanical properties of polyvinyl butyral (PVB) at high strain rates. Constr. Build. Mater. 93, 404–415.
  3. Aben H., Guillemet C. (1993) Photoelasticity of Glass. Springer, Berlin.
  4. Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. (2016) Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 83, 536–573.
  5. Wang Q., Chen H., Wang Y., Sun J. (2013) Thermal shock effect on the glass thermal stress response and crack propagation. Procedia Eng. 62, 717–724.
  6. Fröling M., Persson K., Austrell P. E. (2014) A reduced model for the design of glass structures subjected to impact loads. Eng. Struct. 80, 53–60.
  7. Weller B., Wünsch J., Härth K. (2005) Experimental study on different interlayer materials for laminated glass. In: Conference: Glass Processing Days, Tampere, pp. 120–123.
  8. Rudyak Yu., Pidgurskyi M. Opticheskie metody mekhaniki tverdogo tela. Saarbrücken, Deutschland: LAP LAMBERT Academic Publishing, 2015. 128 р. [In Russian].
  9. Pidgurskyi M., Rudyak Yu. Pidgurskyi I. (2019). Research and Modeling of Stress-Strain State and Fracture Strength of Triplexes at Temperatures 293–213K. // Lecture Notes in Mechanical Engineering SerProceedings of the 7th International Conference on Fracture Fatigue and Wear., Belgium, Ghent University, 2018. P. 135–150.
  10. Rudyak Yu., Pidgurskyi M. Optychni eksperymentalno-rozrakhunkovi metody vyznachennia NDS ta hranychnoho stanu bahatosharovykh struktur z kontsentratoram. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu. № 1. 2014. Р. 11–21. [In Ukrainian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.