logo logo


Dynamics of regular microrelief formation on internal cylindric surfaces

НазваDynamics of regular microrelief formation on internal cylindric surfaces
Назва англійськоюDynamics of regular microrelief formation on internal cylindric surfaces
АвториVolodymyr Dzyura
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описDynamics of regular microrelief formation on internal cylindric surfaces / Volodymyr Dzyura // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 101. — No 1. — P. 115–128.
Bibliographic description:Dzyura V. (2021) Dynamics of regular microrelief formation on internal cylindric surfaces. Scientific Journal of TNTU (Tern.), vol 101, no 1, pp. 115–128.
DOI: https://doi.org/10.33108/visnyk_tntu2021.01.115
УДК

621.787.4

Ключові слова

technology, cylindrical surface, quality parameters, vibration processing, torsional vibrations, mathematical models.

An analysis of modern literature sources to search for mathematical models describing the dynamics of the process of forming a regular microrelief on the inner cylindrical surface of parts, gas transmission equipment operating in severe operating conditions, in order to increase their life. It is established that there are no mathematical models describing this process and the peculiarities of its implementation under the point action of the deforming element on the workpiece surface. The molding movements accompanying the process of forming a regular microrelief on the inner cylindrical surface of the workpiece are considered and the driving forces that accompany this process are analyzed. A mathematical model of dynamic process of regular microrelief formation on internal cylindric surface of the part has been developed. The process of formation is a unique one as it occurs due to the concentrated force whose point of application varies in radial and axial directions relative to the part. Thus, the action has been described by the mathematical model with discrete right-hand side. This action is proposed to be simulated by Dirac delta functions of linear and time variables using the method of regularization of the specific features under discussion. These peculiar features have been described by the conventional methods of integrating of correspondent nonlinear mathematical models of longitudinal and lateral vibrations of the part. The analytical dependencies describing these vibrations have been obtained based on the initial data. Using Maple software, 3D changes in the torsion angle depending on different output values are constructed. The conducted researches will allow to consider torsional fluctuations that is especially actual for long cylindrical details, such as sleeves of hydraulic cylinders, details of drilling mechanisms and others.

ISSN:2522-4433
Перелік літератури
1. John M. R. S., Wilson A. W., Bhardwaj A. P., Abraham, A.; Vinayagam, B.K. An investigation of ball
burnishing process on CNC lathe using finite element analysis. Simul. Model. Pract. Theory 2016. 62.
Р. 88–101. [CrossRef].
2. Sagbas A. Analysis and optimization of surface roughness in the ball burnishing process using response
surface methodology and desirabilty function. Adv. Eng. Softw. 2011, 42, 992–998. [CrossRef].
3. Hassan A. M. The effects of ball and roller burnishing on the surface roughness and hardness of some
non-ferrous metals. J. Mater. Process Technol. 1997, 72, 385–391. [CrossRef].
4. Andrzej Dzierwa, Angelos P. Markopoulos. Influence of ball-burnishing process on surface
topography parameters and tribological properties of hardened steel. Machines 2019, 7, 11.
Doi:10.3390/machines7010011.
5. Hamdi Amine. (2020). Effect of cutting variables on bearing area curve parameters (BAC-P) during hard
turning process. Archive of Mechanical Engineering. 67. 73–95. 10.24425/ame.2020.131684.
6. Kubatova D. & Melichar M. (2019). Roughness Evaluation Using Abbott-Firestone Curve Parameters,
Proceedings of the 30th DAAAM International Symposium, pp.0467-0475, B. Katalinic (Ed.), Published
by DAAAM International, ISBN 978-3-902734-22-8, ISSN 1726-9679, Vienna, Austria. DOI:
10.2507/30th.daaam.proceedings.063.
7. Sheider Yu. G.. Service properties of parts with regular microrelief, 2nd ed., Revised and augmented, Leningrad, Mashinostroenie, 1982, 248 p. [In Russian].
8. GOST 24773-81 Surfaces with regular microshape. Classification, parameters and characteristics, Moscow, Izd. Stand., 1988, 14 p.
9. Aftanaziv I. S., Kyrychok P. O., Melnychuk, P. P. Improving the reliability of machine parts by surface plastic deformation. Zhytomyr: ZhTI Publishing, 2001. 516 p. [in Ukrainian].
10. Slavov S., Dimitrov D. and Iliev I. “Variability of Regular Relief Cells Formed on Complex Functional Surfaces by Simultaneous Five-Axis Ball Burnishing,” UPB Scientific Bulletin, Series D: Mechanical Engineering 82, no. 3 (August 2020): 195–206.
11. Slavov S. D, Dimitrov D. M. A study for determining the most significant parameters of the ball-burnishing process over some roughness parameters of planar surfaces carried out on CNC milling machine, MATEC Web of Conferences 2018 178, 02005 doi:10.1051/matecconf/201817802005.
12. Dzyura V. O. Modeling of partially regular microreliefs formed on the end faces of rotation bodies by a vibration method, UJMEMS. 2020, 6 (1), 30–38.
13. Lacalle Luis. (2012). Ball burnishing application for finishing sculptured surfaces in multi-axis machines. International Journal of Mechatronics and Manufacturing Systems. P. 997–1003
14. Aftanaziv I. S., Lytvynyak Ya. M., Kusyy Ya. M. Doslidzhennya dynamichnykh kharakterystyk vibratsiyno-vidtsentrovoho zmitsnennya dovho vymirnykh tsylindrychnykh detaley. Visnyk Natsional'noho universytetu “L'vivs'ka politekhnika”. 2004. No. 515: Optymizatsiya vyrobnychykh protsesiv i tekhnichnyy kontrol' u mashynobuduvanni ta pryladobuduvanni. P. 55–64.
15. Tsizh B. R., Sokil B. I., Sokil M. B. Teoretychna mekhanika: pidruchnyk. L'viv: Spolom, 2008. P. 458.
16. Pavlovs'kyy M. A. Teoretychna mekhanika. K.: Tekhnika, 2002. 512 p.
17. Markovych B. M. Rivnyannya matematychnoyi fizyky: navchal'nyy posibnyk. L'viv: Vyd-vo L'vivs'koyi politekhniky. 2010. 384 p.
18. Oleynyk O. A. Lektsyy ob uravnenyyakh s chastnymy proyzvodnymy. Moskva: Bynom, 2005. 60 p.
19. Perestyuk M. O., Chernikova O. S. Deyaki suchasni aspekty asymptotyky teoriyi dyferentsial'nykh rivnyan' z impul'snoyu diyeyu. Ukr. mat. zhurn. 2008. 60. P. 81–90.
20. Kapustyan O. V., Perestyuk M. O. Stenzhyts'kyy O. M. Ekstremal'ni zadachi. Teoriya. Pryklady. Metody rozv"yazuvannya. K.: VPTs Kyyiv-untu, 2019. 71 p.
21. Dzura B. Y. K voprosu obosnovanyya metoda usrednenyya dlya yssledovanyya odnochastotnykh kolebanyy, vozbuzhdaemykh mhnovennymy sylamy. Analytycheskye y kachestvennyy metody yssledovanyya dyfferentsyalnykh y dyfferentsyalno-razdnostnykh uravnenyy. Kyev: Yzd-vo Yn-ta matematyky, 1977. С. 34–38.
22. Dzura B. Y., Yshchuk V. V. O vlyyanyy parametrycheskoy nahruzky ympul'snoho vyda na nelyneynuyu kolebatel'nuyu systemu. Analytycheskye y kachestvennyy metody yssledovanyya dyfferentsyalnykh y dyfferentsyalno-razdnostnykh uravnenyy. Kyev: Yzd-vo Yn-ta matematyky, 1977. С. 39–59.
23. Mytropol'skyy Yu. A., Moseenkov B. Y. Asymptotycheskye reshenyya uravnenyy v chastnykh proyzvodnykh. Kyev: Vyshcha shkola, 1976. 584 p.
24. Sokil B. I., Pukach P. Ya., Sokil M. B., Vovk M. I. Advanced asymptotic approaches and perturbation theory methods in the study of the mathematical model of single-frequency oscillations of a nonlinear elastic body. Mathematical modeling and computing. Vol. 7. No. 2. 2020. P. 269–277.
25. Delta–funktsyya. “Matematyka”. URL: https//math world.wolfram.com/ DeltaFunction.html.
26. Cveticanin L. Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration. 2016. 374. Р. 199–210.
27. Cveticanin L., PoganyT. Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics. 2012. Article ID 649050. 20 p.
References:
1. John M. R. S., Wilson A. W., Bhardwaj A. P., Abraham, A.; Vinayagam, B.K. An investigation of ball
burnishing process on CNC lathe using finite element analysis. Simul. Model. Pract. Theory 2016. 62.
Р. 88–101. [CrossRef].
2. Sagbas A. Analysis and optimization of surface roughness in the ball burnishing process using response
surface methodology and desirabilty function. Adv. Eng. Softw. 2011, 42, 992–998. [CrossRef].
3. Hassan A. M. The effects of ball and roller burnishing on the surface roughness and hardness of some
non-ferrous metals. J. Mater. Process Technol. 1997, 72, 385–391. [CrossRef].
4. Andrzej Dzierwa, Angelos P. Markopoulos. Influence of ball-burnishing process on surface
topography parameters and tribological properties of hardened steel. Machines 2019, 7, 11.
Doi:10.3390/machines7010011.
5. Hamdi Amine. (2020). Effect of cutting variables on bearing area curve parameters (BAC-P) during hard
turning process. Archive of Mechanical Engineering. 67. 73–95. 10.24425/ame.2020.131684.
6. Kubatova D. & Melichar M. (2019). Roughness Evaluation Using Abbott-Firestone Curve Parameters,
Proceedings of the 30th DAAAM International Symposium, pp.0467-0475, B. Katalinic (Ed.), Published
by DAAAM International, ISBN 978-3-902734-22-8, ISSN 1726-9679, Vienna, Austria. DOI:
10.2507/30th.daaam.proceedings.063.
7. Sheider Yu. G.. Service properties of parts with regular microrelief, 2nd ed., Revised and augmented, Leningrad, Mashinostroenie, 1982, 248 p. [In Russian].
8. GOST 24773-81 Surfaces with regular microshape. Classification, parameters and characteristics, Moscow, Izd. Stand., 1988, 14 p.
9. Aftanaziv I. S., Kyrychok P. O., Melnychuk, P. P. Improving the reliability of machine parts by surface plastic deformation. Zhytomyr: ZhTI Publishing, 2001. 516 p. [in Ukrainian].
10. Slavov S., Dimitrov D. and Iliev I. “Variability of Regular Relief Cells Formed on Complex Functional Surfaces by Simultaneous Five-Axis Ball Burnishing,” UPB Scientific Bulletin, Series D: Mechanical Engineering 82, no. 3 (August 2020): 195–206.
11. Slavov S. D, Dimitrov D. M. A study for determining the most significant parameters of the ball-burnishing process over some roughness parameters of planar surfaces carried out on CNC milling machine, MATEC Web of Conferences 2018 178, 02005 doi:10.1051/matecconf/201817802005.
12. Dzyura V. O. Modeling of partially regular microreliefs formed on the end faces of rotation bodies by a vibration method, UJMEMS. 2020, 6 (1), 30–38.
13. Lacalle Luis. (2012). Ball burnishing application for finishing sculptured surfaces in multi-axis machines. International Journal of Mechatronics and Manufacturing Systems. P. 997–1003
14. Aftanaziv I. S., Lytvynyak Ya. M., Kusyy Ya. M. Doslidzhennya dynamichnykh kharakterystyk vibratsiyno-vidtsentrovoho zmitsnennya dovho vymirnykh tsylindrychnykh detaley. Visnyk Natsional'noho universytetu “L'vivs'ka politekhnika”. 2004. No. 515: Optymizatsiya vyrobnychykh protsesiv i tekhnichnyy kontrol' u mashynobuduvanni ta pryladobuduvanni. P. 55–64.
15. Tsizh B. R., Sokil B. I., Sokil M. B. Teoretychna mekhanika: pidruchnyk. L'viv: Spolom, 2008. P. 458.
16. Pavlovs'kyy M. A. Teoretychna mekhanika. K.: Tekhnika, 2002. 512 p.
17. Markovych B. M. Rivnyannya matematychnoyi fizyky: navchal'nyy posibnyk. L'viv: Vyd-vo L'vivs'koyi politekhniky. 2010. 384 p.
18. Oleynyk O. A. Lektsyy ob uravnenyyakh s chastnymy proyzvodnymy. Moskva: Bynom, 2005. 60 p.
19. Perestyuk M. O., Chernikova O. S. Deyaki suchasni aspekty asymptotyky teoriyi dyferentsial'nykh rivnyan' z impul'snoyu diyeyu. Ukr. mat. zhurn. 2008. 60. P. 81–90.
20. Kapustyan O. V., Perestyuk M. O. Stenzhyts'kyy O. M. Ekstremal'ni zadachi. Teoriya. Pryklady. Metody rozv"yazuvannya. K.: VPTs Kyyiv-untu, 2019. 71 p.
21. Dzura B. Y. K voprosu obosnovanyya metoda usrednenyya dlya yssledovanyya odnochastotnykh kolebanyy, vozbuzhdaemykh mhnovennymy sylamy. Analytycheskye y kachestvennyy metody yssledovanyya dyfferentsyalnykh y dyfferentsyalno-razdnostnykh uravnenyy. Kyev: Yzd-vo Yn-ta matematyky, 1977. С. 34–38.
22. Dzura B. Y., Yshchuk V. V. O vlyyanyy parametrycheskoy nahruzky ympul'snoho vyda na nelyneynuyu kolebatel'nuyu systemu. Analytycheskye y kachestvennyy metody yssledovanyya dyfferentsyalnykh y dyfferentsyalno-razdnostnykh uravnenyy. Kyev: Yzd-vo Yn-ta matematyky, 1977. С. 39–59.
23. Mytropol'skyy Yu. A., Moseenkov B. Y. Asymptotycheskye reshenyya uravnenyy v chastnykh proyzvodnykh. Kyev: Vyshcha shkola, 1976. 584 p.
24. Sokil B. I., Pukach P. Ya., Sokil M. B., Vovk M. I. Advanced asymptotic approaches and perturbation theory methods in the study of the mathematical model of single-frequency oscillations of a nonlinear elastic body. Mathematical modeling and computing. Vol. 7. No. 2. 2020. P. 269–277.
25. Delta–funktsyya. “Matematyka”. URL: https//math world.wolfram.com/ DeltaFunction.html.
26. Cveticanin L. Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration. 2016. 374. Р. 199–210.
27. Cveticanin L., PoganyT. Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics. 2012. Article ID 649050. 20 p.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.