logo logo


Experimental and quantum chemical studies of some derivative of decahydroacridinedione-1,8 as corrosion inhibitor of steel 17 gs in ns4 solution

НазваExperimental and quantum chemical studies of some derivative of decahydroacridinedione-1,8 as corrosion inhibitor of steel 17 gs in ns4 solution
Назва англійськоюExperimental and quantum chemical studies of some derivative of decahydroacridinedione-1,8 as corrosion inhibitor of steel 17 gs in ns4 solution
АвториTetyana Kalyn, Liubomyr Poberezhny, Dmytro Melnyk
ПринадлежністьIvano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine Ivano-Frankivsk National Medical University, Ivano-Frankivsk,Ukraine
Бібліографічний описExperimental and quantum chemical studies of some derivative of decahydroacridinedione-1,8 as corrosion inhibitor of steel 17 gs in ns4 solution / Tetyana Kalyn, Liubomyr Poberezhny, Dmytro Melnyk // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 101. — No 1. — P. 129–137.
Bibliographic description:Kalyn T., Poberezhny L., Melnyk D. (2021) Experimental and quantum chemical studies of some derivative of decahydroacridinedione-1,8 as corrosion inhibitor of steel 17 gs in ns4 solution. Scientific Journal of TNTU (Tern.), vol 101, no 1, pp. 129–137.
DOI: https://doi.org/10.33108/visnyk_tntu2021.01.129
УДК

620.19

Ключові слова

organic corrosion inhibitors, decahydroacridinedione, protonation.

The use of inhibitors remains one of the most effective and economically sound methods of corrosion protection in various aggressive environments. Since universal inhibitors do not exist, effective inhibitors or compositions should be developed for each individual case. The inhibitory properties of N – phenyl – decahydroacridindiones – 1,8 in groundwater imitats were investigated in this research. Inhibitory properties has been studied by the use of the electrochemical and gravimetric methods.

ISSN:2522-4433
Перелік літератури
1. Alsabagh A. M., Migahed M. A., & Awad H. S. (2006). Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water). Corrosion Science. 48 (4). Р. 813–828.
2. Desimone M. P., Grundmeier G., Gordillo G., & Simison S. N. (2011). Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution: polarization, EIS and PM-IRRAS studies. Electrochimica Acta. 56 (8). Р. 2990–2998.
3. Yavorskyi A., Tsykh V., Poberezhnyi L. (2017) Methodology for geodynamic risk determination in the areas with broaching engineering structures. Scientific Journal of TNTU (Tern.). Vol. 87. No. 3. P. 26–37.
4. Ansari K. R., Quraishi M. A., Singh A. Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement. 2015. Vol. 76. P.136–147.
5. Ansari K. R., Quraishi M. A., Singh A. Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: An experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry. 2015. Vol. 25. P. 89–98.
6. Mourya P., Singh P., Rastogi R. B., Singh M. M. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3- carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4. Applied Surface Science. 2016. Vol. 380. P. 141–150.
7. Hassan N., Ramadan A. M., Khalil S. [et.all] Experimental and computational investigations of a novel quinoline derivative as a corrosion inhibitor for mild steel in salty water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020. Vol. 607/ 125454.
8. Verma C., Quraishi M. A., Ebenso E. E. Quinoline and its derivatives as corrosion inhibitors: A review. Surfaces and Interfaces. 2020. Vol. 21, 100634.
9. Obot I. B., Gasem Z. M. Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corrosion Science. 2014. Vol. 83. P. 359– 366.
10. Wang X., Yang H., Wang F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corrosion Science. 2011. Vol. 53. 1. P. 113–121.
11. Salghi, R., Ben Hmamou, D., Ebenso, E.E. [et all.] 2, 10 – dimethylacridin – 9 (10H) – one as new synthesized corrosion inhibitor for C38 steel in 0.5 M H2SO4. International Journal of Electrochemical Science. 2015. Vol. 10. (1). P. 259–271.
12. Poberezhny L., Hrytsanchuk A., Halushko N., Poberezhna L. (2019) Influence of рН rate on corrosion of gas pipelines in soils with high mineralization. Scientific Journal of TNTU (Tern.). Vol. 95. No 3. P. 41–48.
13. Bouklah M., Hammouti B., Lagrenée M. and Bentiss F. Thermodynamic Properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a Corrosion Inhibitor for Mild Steel in Normal Sulfuric Acid Medium. Corrosion Science. 2006. Vol. 48. P. 2831–2842. URL: http://dx.doi.org/10.1016/j.corsci.2005. 08.019.
14. Wang D., Li S., Ying Y., Wang M., Xiao H. and Chen Z. Theoretical and Experimental Studies of Structure and Inhibition Efficiency of Imidazoline Derivatives. Corrosion Science. 1999. Vol. 41. Nо. 10. P. 1911–1919. URL: http://dx.doi.org/10.1016/S0010-938X(99)00027-X.
15. Udhayakala P., Rajendiran T. V. and Gunasekaran S. Theoretical Approach to the Corrosion Inhibition Efficiency of Some Pyrimidine Derivatives Using DFT Method. Journal of Computational Methods in Molecular Design. 2012. Vol. 2. Nо. 1. P. 1–15.
16. Poberezhny L. (2017) Effect of ionic strength on electro corrosion in chloride and chloride-sulfate environments. Scientific Journal of TNTU (Tern.). Vol. 88. No. 4. P. 49–55.
17. Benmoussat A., Hadjel M. Corrosion behavior of low carbon line pipe steel in soil environment. Eurasian Chemico-Technological Journal. 2005. Vol. 7. Nо. 2. P. 147–156.
18. Pearson R. G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorganic Chemistry. 1988. Vol. 27. Nо. 4. P. 734–740. URL: http://dx.doi.org/10.1021/ic00277a030.
19. Parr R. G., Pearson R. G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society. 1983. Vol. 105. Nо. 26. P. 7512–7516. URL: http:// dx.doi.org/10.1021/ja00364a005.
20. Parr R. G., Szentpaly L. V., Liu S. Electrophilicity Index. Journal of the American Chemical Society. 1999. Vol. 121. Nо. 9. P. 1922–1924. URL: http://dx.doi.org/10.1021/ja983494x.
21. E. S. H. El Ashry, A. El Nemr, S. A. Esawy, S. Ragab Corrosion Inhibitors: Part II: Quantum Chemical Studies on the Corrosion Inhibitions of Steel in Acidic Medium by Some Triazole, Oxadiazole and Thiadiazole Derivatives. Electrochimica Acta. 2006. Vol. 5. Nо. 19. P. 3957–3968. URL: http://dx.doi. org/10.1016/j.electacta.2005.11.010.
22. Issa R. M., Awad M. K., Atlam F. M. Quantum Chemical Studies on the Inhibition of Corrosion of Copper Surface by Substituted Uracils. Applied Surface Science. 2008. Vol. 255. Nо. 5. P. 2433–2441. URL: http://dx.doi.org/10.1016/j.apsusc.2008.07.155.
23. Sandip K. R., Islam N. and Ghosh D. G. Modeling of the Chemico-Physical Process of Protonation of Molecules Entailing Some Quantum Chemical Descriptors. Journal of Quantum Information Science. 2011. Vol. 1. P. 87–95. DOI:10.4236/jqis.2011.12012.
24. Geerlings P., Proft F. D. Chemical Reactivity as Described by Quantum Chemical Methods. International Journal of Molecular Sciences. 2002. Vol. 3. Nо. 4. P. 276–309. URL: http://dx.doi.org/10.3390/ i3040276.
25. Obi-Egbedi, N. O., Obot I. B., El-khaiary M. I. [et all] Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface. International Journal of Electrochemical Science. 2011. Vol. 6. Nо. 11. P. 5649.
26. Ebenso E. E., Isabirye D. A., Eddy N. O. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. International Journal of Molecular Sciences. 2010. Vol. 11. Nо. 6. P. 2473–2498. URL: http://dx.doi.org/10.3390/ijms 11062473.
27. Lukovits I., Kalman E., Zucchi F. Corrosion Inhibitors – Correlation between Electronic Structure and Efficiency. Corrosion. 2001. Vol. 57. Nо. 1. P. 3–8. URL: http://dx.doi.org/10.5006/1.3290328.
References:
1. Alsabagh A. M., Migahed M. A., & Awad H. S. (2006). Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water). Corrosion Science. 48 (4). Р. 813–828.
2. Desimone M. P., Grundmeier G., Gordillo G., & Simison S. N. (2011). Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution: polarization, EIS and PM-IRRAS studies. Electrochimica Acta. 56 (8). Р. 2990–2998.
3. Yavorskyi A., Tsykh V., Poberezhnyi L. (2017) Methodology for geodynamic risk determination in the areas with broaching engineering structures. Scientific Journal of TNTU (Tern.). Vol. 87. No. 3. P. 26–37.
4. Ansari K. R., Quraishi M. A., Singh A. Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement. 2015. Vol. 76. P.136–147.
5. Ansari K. R., Quraishi M. A., Singh A. Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: An experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry. 2015. Vol. 25. P. 89–98.
6. Mourya P., Singh P., Rastogi R. B., Singh M. M. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3- carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4. Applied Surface Science. 2016. Vol. 380. P. 141–150.
7. Hassan N., Ramadan A. M., Khalil S. [et.all] Experimental and computational investigations of a novel quinoline derivative as a corrosion inhibitor for mild steel in salty water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020. Vol. 607/ 125454.
8. Verma C., Quraishi M. A., Ebenso E. E. Quinoline and its derivatives as corrosion inhibitors: A review. Surfaces and Interfaces. 2020. Vol. 21, 100634.
9. Obot I. B., Gasem Z. M. Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corrosion Science. 2014. Vol. 83. P. 359– 366.
10. Wang X., Yang H., Wang F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corrosion Science. 2011. Vol. 53. 1. P. 113–121.
11. Salghi, R., Ben Hmamou, D., Ebenso, E.E. [et all.] 2, 10 – dimethylacridin – 9 (10H) – one as new synthesized corrosion inhibitor for C38 steel in 0.5 M H2SO4. International Journal of Electrochemical Science. 2015. Vol. 10. (1). P. 259–271.
12. Poberezhny L., Hrytsanchuk A., Halushko N., Poberezhna L. (2019) Influence of рН rate on corrosion of gas pipelines in soils with high mineralization. Scientific Journal of TNTU (Tern.). Vol. 95. No 3. P. 41–48.
13. Bouklah M., Hammouti B., Lagrenée M. and Bentiss F. Thermodynamic Properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a Corrosion Inhibitor for Mild Steel in Normal Sulfuric Acid Medium. Corrosion Science. 2006. Vol. 48. P. 2831–2842. URL: http://dx.doi.org/10.1016/j.corsci.2005. 08.019.
14. Wang D., Li S., Ying Y., Wang M., Xiao H. and Chen Z. Theoretical and Experimental Studies of Structure and Inhibition Efficiency of Imidazoline Derivatives. Corrosion Science. 1999. Vol. 41. Nо. 10. P. 1911–1919. URL: http://dx.doi.org/10.1016/S0010-938X(99)00027-X.
15. Udhayakala P., Rajendiran T. V. and Gunasekaran S. Theoretical Approach to the Corrosion Inhibition Efficiency of Some Pyrimidine Derivatives Using DFT Method. Journal of Computational Methods in Molecular Design. 2012. Vol. 2. Nо. 1. P. 1–15.
16. Poberezhny L. (2017) Effect of ionic strength on electro corrosion in chloride and chloride-sulfate environments. Scientific Journal of TNTU (Tern.). Vol. 88. No. 4. P. 49–55.
17. Benmoussat A., Hadjel M. Corrosion behavior of low carbon line pipe steel in soil environment. Eurasian Chemico-Technological Journal. 2005. Vol. 7. Nо. 2. P. 147–156.
18. Pearson R. G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorganic Chemistry. 1988. Vol. 27. Nо. 4. P. 734–740. URL: http://dx.doi.org/10.1021/ic00277a030.
19. Parr R. G., Pearson R. G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society. 1983. Vol. 105. Nо. 26. P. 7512–7516. URL: http:// dx.doi.org/10.1021/ja00364a005.
20. Parr R. G., Szentpaly L. V., Liu S. Electrophilicity Index. Journal of the American Chemical Society. 1999. Vol. 121. Nо. 9. P. 1922–1924. URL: http://dx.doi.org/10.1021/ja983494x.
21. E. S. H. El Ashry, A. El Nemr, S. A. Esawy, S. Ragab Corrosion Inhibitors: Part II: Quantum Chemical Studies on the Corrosion Inhibitions of Steel in Acidic Medium by Some Triazole, Oxadiazole and Thiadiazole Derivatives. Electrochimica Acta. 2006. Vol. 5. Nо. 19. P. 3957–3968. URL: http://dx.doi. org/10.1016/j.electacta.2005.11.010.
22. Issa R. M., Awad M. K., Atlam F. M. Quantum Chemical Studies on the Inhibition of Corrosion of Copper Surface by Substituted Uracils. Applied Surface Science. 2008. Vol. 255. Nо. 5. P. 2433–2441. URL: http://dx.doi.org/10.1016/j.apsusc.2008.07.155.
23. Sandip K. R., Islam N. and Ghosh D. G. Modeling of the Chemico-Physical Process of Protonation of Molecules Entailing Some Quantum Chemical Descriptors. Journal of Quantum Information Science. 2011. Vol. 1. P. 87–95. DOI:10.4236/jqis.2011.12012.
24. Geerlings P., Proft F. D. Chemical Reactivity as Described by Quantum Chemical Methods. International Journal of Molecular Sciences. 2002. Vol. 3. Nо. 4. P. 276–309. URL: http://dx.doi.org/10.3390/ i3040276.
25. Obi-Egbedi, N. O., Obot I. B., El-khaiary M. I. [et all] Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface. International Journal of Electrochemical Science. 2011. Vol. 6. Nо. 11. P. 5649.
26. Ebenso E. E., Isabirye D. A., Eddy N. O. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. International Journal of Molecular Sciences. 2010. Vol. 11. Nо. 6. P. 2473–2498. URL: http://dx.doi.org/10.3390/ijms 11062473.
27. Lukovits I., Kalman E., Zucchi F. Corrosion Inhibitors – Correlation between Electronic Structure and Efficiency. Corrosion. 2001. Vol. 57. Nо. 1. P. 3–8. URL: http://dx.doi.org/10.5006/1.3290328.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.