logo logo


Algorithm for designing of speed change control devices through a gear differential with a closed-loop hydraulic system

НазваAlgorithm for designing of speed change control devices through a gear differential with a closed-loop hydraulic system
Назва англійськоюAlgorithm for designing of speed change control devices through a gear differential with a closed-loop hydraulic system
АвториOleh Strilets, Volodymyr Malashchenko, Viacheslav Pasika
ПринадлежністьNational University of Water and Environmental Engineering, Rivne, Ukraine Lviv Polytechnic National University, Lviv, Ukraine
Бібліографічний описAlgorithm for designing of speed change control devices through a gear differential with a closed-loop hydraulic system / Oleh Strilets, Volodymyr Malashchenko, Viacheslav Pasika // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 101. — No 1. — P. 138–148.
Bibliographic description:Strilets O., Malashchenko V., Pasika V. (2021) Algorithm for designing of speed change control devices through a gear differential with a closed-loop hydraulic system. Scientific Journal of TNTU (Tern.), vol 101, no 1, pp. 138–148.
DOI: https://doi.org/10.33108/visnyk_tntu2021.01.138
УДК

621.833.65

Ключові слова

speed change control device, gear differential, closed-loop hydraulic system, sun gear, ring gear, carrier, planet.

The algorithm of practical application of researches results of speed changes management devices with a gear differential and the stopper of rotational movement in the form of the closed-loop hydraulic system has been described. An example is a single-stage single-row gear differential, when the driving link is a sun gear, driven is a ring gear, and the control link is a carrier. For such a device, the order of execution of in design steps has been described. The described execution procedure of speed change devices designing will be valid for all kinematic schemes of single- and multistage gear differentials with stoppers of rotational movement in the form of the closed-loop hydraulic systems with control through carriers.

ISSN:2522-4433
Перелік літератури
1. Malashchenko V. O., Strilets O. R., Strilets V. M. Novyy sposob besstupenchatogo izmeneniya skorosti pri pomoshchi zubchatykh differentsial'nykh peredach s zamknutoy gidrosistemoy. Mezhdunarodnyy inzhenernyy zhurnal “Privody i komponenty mashin”. 2015. No. 4–5. P. 7–10. [In Russian].
2. Malashenko V., Strilets O., Strilets V. Method and device for speed change by the epicyclic gear train vith stepped-planet gear set, Research Works of AFIT. Warszawa: AFIT, 2016. Iss. 38. P. 13–19.
3. Malashenko V., Strilets O., Strilets V., Klysh S. Investigation of the energy effectiveness of multistage differential gears when the speed is changed by the carrier, Diagnostyka, Warchava, 2019. Vol. 20. No. 4. P. 57–64.
4. Strilets O. R. Kinematychni, sylovi i enerhetychni zalezhnosti u zamknutiy hidrosystemi mekhanichnoho pryvodu. Visnyk NUVHP. Zbirnyk naukovykh prats. Seriya “Tekhnichni nauky”. Rivne: NUVHP, 2020. Iss. 1 (89). P. 152–164. [In Ukrainian].
5. Strilets O., Malashchenko V., Strilets V. Dynamic model of a closed-loop hydraulic system for speed control through gear differential. Scientific Journal of TNTU. 2020. Vol. 98. No. 2. P. 91–98.
6. Pawar1 P. V., Kulkarni P. R. Design of two stage planetary gear train for high reduction ratio. Journal of Research in Engineering and Technology. eSAT Publishing House, Bangalore, India. 2015. Vol. 04. Iss. 06. P. 150–157.
7. Bahk C.-J., Parker R. G. Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mechanism and Machine Theory. Elsevier. 2013. No. 70. P. 298–319.
8. Qilin Huang, Yong Wang, Zhipu Huo, Yudong Xie Nonlinear Dynamic Analysis and Optimization of Closed-Form Planetary Gear System. Mathematical Problems in Engineering. Vol. 2013. 2013. 12 p.
9. Miguel Pleguezuelos, José I. Pedrero, Miryam B. Sánchez Analytical Expressions of the Efficiency of Standard and High Contact Ratio Involute Spur Gears. Mathematical Problems in Engineering. Vol. 2013. 2013. 14 p.
10. Chen C. Power flow and efficiency analysis of epicyclic gear transmission with split power. Mechanism and Machine Theory. Vol. 59. 2013. P. 96–106.
11. Chao Chen, Jiabin Chen Efficiency analysis of two degrees of freedom epicyclic gear transmission and experimental. Mechanism and Machine Theory. Vol. 87. 2015. P. 115–130.
12. Laus L. P., Simas H., Martins D. Efficiency of gear trains determined using graph and screw. Mechanism and Machine Theory. Vol. 52. 2012. P. 296–325.
13. Michiel Plooij, Tom van der Hoeven, Gerard Dunning, Martijn Wisse Statially balanced brakes. Original Research Article Precision Engineering. Vol. 43. January 2016. P. 468–478.
14. Attia E. M., Elsodany N. M., El-Gamal H. A., Elgohari M. A. Teoretical and experimental study of magneto-rheological fluid brake. Original Research Article Alexandria Engineering Journal. Vol. 56. Iss. 2. June 2017. P. 189–200.
15. Kerem Karakoc, Afzal Suleman, Edvard J. Park Analytical modeling of eddy current brakes with the application of time varyieng magnetic fields. Original Research Article Applied Mathematical Modelling. Vol. 40. Iss. 2. 15 January 2016. P. 1168–1179.
16. Kinytskyi Ia. T. Teoriya mekhanizmiv i mashyn: Pidruchnyk. NAN Ukrayiny. K.: “Naukova Dumka”, 2002. 660 p. [In Ukrainian].
17. Andriyenko L. A., Baykov B. A., Ganulich I. K. i dr. Detali mashin / pod red. O. A. Ryakhovskogo. 2-ye izd., pererab. M.: Izd-vo MGTU im. N. Baumana, 2004. 520 p. [In Russian].
18. Yushkin V. V. Basics of calculating a volumetric hydraulic drive. Minsk: Vysh. shk., 1982. 93 p. [In Russian].
19. Gear pumps. Katalog. URL: https://www.hydrosila.com. [In Russian].
20. Barsov G. A., Bezmenova L. V., Grodzenskaya L. S. i dr. Teoriya ploskikh mekhanizmov i dinamika mashin / pod reaktsiyey A. V. Zheligovskogo, M.: Vysshaya shkola, 1961, 336 p. [In Russian].
21. Koziar M. M., Feshchuk Iu. V., Parfeniuk O. V. Kompiuterna hrafika. SolidWorks: Navchalnyi posibnyk, Kherson: OLDI-PLUS, 2018. 252 p. [In Ukrainian].
References:
1. Malashchenko V. O., Strilets O. R., Strilets V. M. Novyy sposob besstupenchatogo izmeneniya skorosti pri pomoshchi zubchatykh differentsial'nykh peredach s zamknutoy gidrosistemoy. Mezhdunarodnyy inzhenernyy zhurnal “Privody i komponenty mashin”. 2015. No. 4–5. P. 7–10. [In Russian].
2. Malashenko V., Strilets O., Strilets V. Method and device for speed change by the epicyclic gear train vith stepped-planet gear set, Research Works of AFIT. Warszawa: AFIT, 2016. Iss. 38. P. 13–19.
3. Malashenko V., Strilets O., Strilets V., Klysh S. Investigation of the energy effectiveness of multistage differential gears when the speed is changed by the carrier, Diagnostyka, Warchava, 2019. Vol. 20. No. 4. P. 57–64.
4. Strilets O. R. Kinematychni, sylovi i enerhetychni zalezhnosti u zamknutiy hidrosystemi mekhanichnoho pryvodu. Visnyk NUVHP. Zbirnyk naukovykh prats. Seriya “Tekhnichni nauky”. Rivne: NUVHP, 2020. Iss. 1 (89). P. 152–164. [In Ukrainian].
5. Strilets O., Malashchenko V., Strilets V. Dynamic model of a closed-loop hydraulic system for speed control through gear differential. Scientific Journal of TNTU. 2020. Vol. 98. No. 2. P. 91–98.
6. Pawar1 P. V., Kulkarni P. R. Design of two stage planetary gear train for high reduction ratio. Journal of Research in Engineering and Technology. eSAT Publishing House, Bangalore, India. 2015. Vol. 04. Iss. 06. P. 150–157.
7. Bahk C.-J., Parker R. G. Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mechanism and Machine Theory. Elsevier. 2013. No. 70. P. 298–319.
8. Qilin Huang, Yong Wang, Zhipu Huo, Yudong Xie Nonlinear Dynamic Analysis and Optimization of Closed-Form Planetary Gear System. Mathematical Problems in Engineering. Vol. 2013. 2013. 12 p.
9. Miguel Pleguezuelos, José I. Pedrero, Miryam B. Sánchez Analytical Expressions of the Efficiency of Standard and High Contact Ratio Involute Spur Gears. Mathematical Problems in Engineering. Vol. 2013. 2013. 14 p.
10. Chen C. Power flow and efficiency analysis of epicyclic gear transmission with split power. Mechanism and Machine Theory. Vol. 59. 2013. P. 96–106.
11. Chao Chen, Jiabin Chen Efficiency analysis of two degrees of freedom epicyclic gear transmission and experimental. Mechanism and Machine Theory. Vol. 87. 2015. P. 115–130.
12. Laus L. P., Simas H., Martins D. Efficiency of gear trains determined using graph and screw. Mechanism and Machine Theory. Vol. 52. 2012. P. 296–325.
13. Michiel Plooij, Tom van der Hoeven, Gerard Dunning, Martijn Wisse Statially balanced brakes. Original Research Article Precision Engineering. Vol. 43. January 2016. P. 468–478.
14. Attia E. M., Elsodany N. M., El-Gamal H. A., Elgohari M. A. Teoretical and experimental study of magneto-rheological fluid brake. Original Research Article Alexandria Engineering Journal. Vol. 56. Iss. 2. June 2017. P. 189–200.
15. Kerem Karakoc, Afzal Suleman, Edvard J. Park Analytical modeling of eddy current brakes with the application of time varyieng magnetic fields. Original Research Article Applied Mathematical Modelling. Vol. 40. Iss. 2. 15 January 2016. P. 1168–1179.
16. Kinytskyi Ia. T. Teoriya mekhanizmiv i mashyn: Pidruchnyk. NAN Ukrayiny. K.: “Naukova Dumka”, 2002. 660 p. [In Ukrainian].
17. Andriyenko L. A., Baykov B. A., Ganulich I. K. i dr. Detali mashin / pod red. O. A. Ryakhovskogo. 2-ye izd., pererab. M.: Izd-vo MGTU im. N. Baumana, 2004. 520 p. [In Russian].
18. Yushkin V. V. Basics of calculating a volumetric hydraulic drive. Minsk: Vysh. shk., 1982. 93 p. [In Russian].
19. Gear pumps. Katalog. URL: https://www.hydrosila.com. [In Russian].
20. Barsov G. A., Bezmenova L. V., Grodzenskaya L. S. i dr. Teoriya ploskikh mekhanizmov i dinamika mashin / pod reaktsiyey A. V. Zheligovskogo, M.: Vysshaya shkola, 1961, 336 p. [In Russian].
21. Koziar M. M., Feshchuk Iu. V., Parfeniuk O. V. Kompiuterna hrafika. SolidWorks: Navchalnyi posibnyk, Kherson: OLDI-PLUS, 2018. 252 p. [In Ukrainian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.