logo logo


Investigation of object manipulation positioning accuracy by bernoulli gripping devices in robotic cells

НазваInvestigation of object manipulation positioning accuracy by bernoulli gripping devices in robotic cells
Назва англійськоюInvestigation of object manipulation positioning accuracy by bernoulli gripping devices in robotic cells
АвториVolodymyr Savkiv, Roman Mykhailyshyn, Vadim Piscio, Ihor Kozbur, Frantisek Duchon, Lubos Chovanec
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
Бібліографічний описInvestigation of object manipulation positioning accuracy by bernoulli gripping devices in robotic cells / Volodymyr Savkiv, Roman Mykhailyshyn, Vadim Piscio, Ihor Kozbur, Frantisek Duchon, Lubos Chovanec // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 102. — No 2. — P. 21–36.
Bibliographic description:Savkiv V., Mykhailyshyn R., Piscio V., Kozbur I., Duchon F., Chovanec L. (2021) Investigation of object manipulation positioning accuracy by bernoulli gripping devices in robotic cells. Scientific Journal of TNTU (Tern.), vol 102, no 2, pp. 21–36.
УДК

621.865

Ключові слова

industrial robot, transportation, manipulation, Bernoulli gripping device, accuracy, positioning.

Ensuring the necessary accuracy of positioning the objects of manipulation of Bernoulli's grippers in robotic cells is an urgent task and can be achieved by choosing rational parameters of the gripping process. The article conducts experimental studies of the process of handling by Bernoulli grippers of objects of manipulation at different operating parameters and their weight. For this purpose, an experimental setup was developed, which consists of an industrial robot IRB 4600, an IRC5 controller, a Raspberry Pi microcontroller and two clock-type micrometers. The method of determining the total positioning error of the "robot-gripper-object" system is presented, which takes into account the positioning errors of the industrial robot, the errors of the gripping device and the errors of basing the object of manipulation relative to the axis of symmetry of the gripping device. The ABB IRB 1600 industrial robot was programmed in the ABB RobotStudio environment to cyclically simulate the handling operation and to determine the deviation of the position of the manipulation object after its gripping from different distances. The first cycle of automatic mode was used to calibrate the micrometer indicators, while gripping the object was carried out from a distance of 0.02 mm. For better reliability of research results, 20 measurement cycles were performed for each of the variable parameters. As a result, it was found that the maximum base error of objects does not exceed 0.4 mm. When capturing objects from a distance of 0.5…1 mm, the mean value of the base error will be 0.08…0.15 mm, with a standard deviation of 0.025…0.035 mm. The paper studies the effect of the displacement Δ of the center of mass of the gripped object relative to the axis of the Bernoulli gripper on the accuracy of the base of the objects. It is established that when the center of mass of the gripped objects is shifted relative to the Bernoulli gripper axis up to 20 mm, the maximum base error of the objects increases 2.2 times.

 

ISSN:2522-4433
Перелік літератури
  1. International Federation of Robotics. URL: https://ifr.org/.
  2. World Robotics 2020 – Industrial Robots and Service Robots. URL: https://ifr.org/worldrobotics.
  3. Kumar S., Narayan Y., & Chouinard K. Effort reproduction accuracy in pinching, gripping, and lifting among industrial males. International Journal of Industrial Ergonomics. Vol. 20. No. 2. 1997. Р. 109–119.
  4. Fantoni G., Santochi M., Dini G., Tracht K., Scholz-Reiter B., Fleischer J., and Hansen H.N., Grasping devices and methods in automated production processes. CIRP Annals-Manufacturing Technology. Vol. 63. No. 2. 2014. Р. 679–701.
  5. Monkman G. J., Hesse S., Steinmann R., Schunk H. Robot grippers, Weinheim: John Wiley & Sons, KGaA, 2007, 452 p.
  6. Carbone G. Grasping in robotics, Springer-Verlag London, 2012, 468 p.
  7. Wolf A., Schunk H. A., Grippers in motion: the fascination of automated handling tasks, Carl Hanser Verlag GmbH Co KG, 2018.
  8. Afag, Gripper Moduls. URL: https://www.afag.com/en/handling/handling-systems.html.
  9. Festo, Catalogs. URL: https://www.festo.com/cat/ru-uk_ua/products_010800.
  10. IPR, Intelligente Peripherien fur Roboter GmbH, Catalogs. URL: https://en.iprworldwide.com/ category/grippers/.
  11. PHD Inc., Catalogs. URL: https://www.phdinc.com/products/category/?product=grippers.
  12. Zimmer Group Canada Inc., Catalogs. URL: https://www.zimmer-group.com/en/technologies-components/handling-technology/grippers.
  13. Schunk GmbH, Gripping Moduls. URL: https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/.
  14. SMC, Catalogs. URL: https://www.smcusa.com/products/actuators/grippers~20234.
  15. Li S., Stampfli J. J., Xu H. J., Malkin E., Diaz E. V., Rus D., & Wood R. J. A vacuum-driven origami “magic-ball” soft gripper, In 2019 International Conference on Robotics and Automation (ICRA). 2019. May. Р. 7401–7408.
  16. Makarov A. M., Mushkin O. V., & Lapikov M. A. Use of additive technologies to increase effectiveness of design and use of a vacuum gripping devices for flexible containers, In MATEC Web of Conferences. Vol. 224. 2018. DOI: 01082.
  17. Kim J. H., & Lee S. J. Configuration of noncontact grip system for carrying large flat sheets using vacuum air heads. Journal of Tribology. Vol. 137. No. 4. 2015.
  18. Morimoto K., Tada Y., Takashima H., Minamino K., Tahara R., & Konishi S. Design and characterization of high-performance contactless gripper using spiral air flows, In 2010 International Symposium on Micro-NanoMechatronics and Human Science. 2010. November. Р. 423–428.
  19. Zhao J., Wang C., & Li X. Gap flow with circumferential velocity in annular skirt of vortex gripper, Precision Engineering. Vol. 57. 2019. Р. 64–72.
  20. Wang C., Zhao J., & Li X. Effect of chamber diameter of vortex gripper on maximum suction force and flow field. Advances in Mechanical Engineering. Vol. 11. No. 3. 2019. DOI: 1687814019837401.
  21. Roy D. Development of novel magnetic grippers for use in unstructured robotic workspace, Robotics and Computer-Integrated Manufacturing. Vol. 35. 2015. Р. 16–41.
  22. Gawel A., Kamel M., Novkovic T., Widauer J., Schindler D., Von Altishofen B. P., & Nieto J. Aerial picking and delivery of magnetic objects with mavs, In 2017 IEEE international conference on robotics and automation (ICRA). 2017. May. Р. 5746– 5752.
  23. Chen C., & Chung T. A novel thermomagnetic gripper, In 2015 IEEE International Magnetics Conference (INTERMAG). 2015. May. Р. 1–11.
  24. Fiaz U. A., Abdelkader M., & Shamma J. S. An intelligent gripper design for autonomous aerial transport with passive magnetic grasping and dual-impulsive release, In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018. July. Р. 1027–1032.
  25. Liu D., Wang M., Fang N., Cong M., & Du Y. Design and tests of a non-contact Bernoulli gripper for rough-surfaced and fragile objects gripping, Assembly Automation. 2020. DOI: 10.1108/AA-10-2019-0171.
  26.  Savkiv V., Mykhailyshyn R., Duchon F. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum. No. 159. 2019. Р. 524–533, DOI: 10.1016/j.vacuum.2018.11.005.
  27. Shi K., & Li X. Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering. Vol. 52. 2018. Р. 323–331.
  28. Savkiv V., Mykhailyshyn R., Fendo O., Mykhailyshyn M. Orientation Modeling of Bernoulli Gripper Device with Off-Centered Masses of the Manipulating Object. Procedia Engineering. No. 187. 2017. Р. 264–271. DOI: 10.1016/j.proeng.2017.04.374.
  29. Mykhailyshyn R., Savkiv V., Duchon F., Mikhalishin M. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices. Journal of Electrical Engineering. Vol. 68. No. 6. 2017. Р. 496–502. DOI: 10.1515/jee-2017-0087.
  30. Mykhailyshyn R., Savkiv V., Mikhalishin M., Duchon F. Experimental Research of the Manipulatiom Process by the Objects Using Bernoulli Gripping Devices, In Young Scientists Forum on Applied Physics and Engineering. International IEEE Conference. 2017. Р. 8–11. DOI: 10.1109/YSF.2017.8126583.
  31. Seliger G., Stephan J., & Lange S. Non-rigid part handling by new gripping device, In Proc 8th Intl Conf Manuf Eng, ICME2000, Sydney, Australi. 2000. Р. 423–427.
  32. Buljo J. O., & Gjerstad T. B. Robotics and automation in seafood processing, In Robotics and Automation in the Food Industry. 2013. Р. 354–384.
  33. Brecher C., Kukla C., Schares R., Emonts M., Haus M. Form-Adaptive Gripping System for Light-Weight Productions, In 20th International Conference on Composite Materials. 2015. Р. 19–24.
  34. Hawkes E. W., Christensen D. L., Han A. K., Jiang H., & Cutkosky M. R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film, In 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015. May. Р. 2305 –2312.
  35. Förster F., Ballier F., Coutandin S., Defranceski A., Fleischer J. Manufacturing of textile preforms with an intelligent draping and gripping system. Procedia CIRP. No. 66. 2017. Р. 39–44.
  36. Savkiv V., Mykhailyshyn R., Duchon F., Fendo O. Justification of Design and Parameters of Bernoulli-Vacuum Gripping Device. International Journal of Advanced Robotic Systems. 2017. DOI: 1729881417741740.
  37. Mykhailyshyn R., Savkiv V., Diahovchenko I., Duchon F., Trembach R. Research of Energy Efficiency of Manipulation of Dimensional Objects With the Use of Pneumatic Gripping Devices. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering UKRCON-2019. 2019. Р. 527–532. DOI: 10.1109/UKRCON.2019.8879957.
  38. Jørgensen T. B., Krüger N., Pedersen M. M., Hansen N. W., Hansen B. R. Designing a Flexible Grasp Tool and Associated Grasping Strategies for Handling Multiple Meat Products in an Industrial Setting. International Journal of Mechanical Engineering and Robotics Research. Vol. 8. No. 2. 2019. Р. 220–227.
  39. Fleischer J., Förster F., & Gebhardt J. Sustainable manufacturing through energy efficient handling processes. Procedia CIRP. Vol. 40. 2016. Р. 574–579.
  40. Fleischer J., Ochs A., & Förster F. Gripping technology for carbon fibre material, In CIRP International conference on competitive manufacturing, Band: Green manufacturing for a blue planet. 2013. Р. 65–71.
  41. Lien T. K., & Davis P. G. G. A novel gripper for limp materials based on lateral Coanda ejectors. CIRP annals. Vol. 57. No. 1. 2008. Р. 33–36.
  42. Lovasz E. C., Mesaroş-Anghel V., Gruescu C. M., Moldovan C. E., & Ceccarelli M. General Algorithm for Computing the Theoretical Centering Precision of the Gripping Devices, In Advances in Mechanism Design II. 2017. Р. 15–21.
  43. Kyrylovych V. A., Cherepansʹka I. Yu., & Sazonov A. Yu. 2010, Adaptyvnistʹ skhvativ promyslovykh robotiv yak napryam pidvyshchennya efektyvnosti robotyzovanykh mekhanoskladalʹnykh tekhnolohiy. Bulletin of ZhSTU. Series «Technical Sciences». Vol. 1. No. 52. Р. 17–24. [Іn Ukrainian].
  44. Rong W., Liang S., Wang L., Zhang S., & Zhang W. Model and control of a compact long-travel accurate-manipulation platform. IEEE/ASME Transactions on Mechatronics. Vol. 22. No. 1. 2016. Р. 402–411.
  45. Wang J., Adib F., Knepper R., Katabi D., & Rus D. RF-compass: Robot object manipulation using RFIDs, In Proceedings of the 19th annual international conference on Mobile computing & networking. 2013. September. Р. 3–14.
  46. Sajjan S., Moore M., Pan M., Nagaraja G., Lee J., Zeng A., & Song S. Clear Grasp: 3D Shape Estimation of Transparent Objects for Manipulation. In 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. May. Р. 3634–3642.
  47. Aulin V. V., Pankov A. O., Zamota T. M., Lyashuk O. L., Hrynkiv A. V., Tykhyi A. A., Kuzyk A. V., Development of mechatronic module for the seeding control system. INMATEH – Agricultural Engineering. Vol. 59. No. 3. 2019. Р. 1–8.
  48. Aulin V., Hrynkiv A., Lyashuk O., Vovk Y., Lysenko S., Holub D., Zamota T., Pankov A., Sokol M., Ratynskyi V., Lavrentieva O. Increasing the functioning efficiency of the working warehouse of the «Uvk Ukraine» company transport and logistics center, Communications – Scientific Letters of the University of Zilina. Vol. 22. No. 2. 2020. Р. 3–14.
  49. Collet A., Berenson D., Srinivasa S. S., & Ferguson D. Object recognition and full pose registration from a single image for robotic manipulation. In 2009 IEEE International Conference on Robotics and Automation. 2009. May. Р. 48–55.
  50.  Savkiv V., Mykhailyshyn R., Duchon F., Mikhalishin M. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc, International Journal of Advanced Robotic Systems, 2018. DOI: 1729881418762670.
  51. Mykhailyshyn R., Savkiv V., Duchon F., Koloskov V., Diahovchenko I. Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system, 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). 2018. Р. 295–300. DOI: 10.1109/ieps.2018.8559586.
  52. Mykhailyshyn R., Savkiv V., Duchon F., Maruschak P., Prentkovskis O. Substantiation of Bernoulli Grippers Parameters at Non-Contact Transportation of Objects with a Displaced Center of Mass, 22nd International Scientific Conference Transport Means 2018. Klaipeda. 2018. Р. 1370–1375.
  53. Mykhailyshyn R., Savkiv V., Duchon F., Chovanec L. Experimental Investigations of the Dynamics of Contactless Transportation by Bernoulli Grippers, 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). 2020. Р. 97–100. DOI: 10.1109/ MSNMC50359.2020.9255521.
  54. Mykhailyshyn R., Savkiv V., Boyko I., Prada E., & Virgala, I. Substantiation of Parameters of Friction Elements of Bernoulli Grippers With a Cylindrical Nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME). Vol. 11. No. 2. 2021. Р. 17–39. DOI: 10.4018/ IJMMME.2021040102.
  55. Giesen T., Wertz R., Fischmann C., Kreck G., Govaerts J., Vaes J., & Verl A. Advanced production challenges for automated ultra-thin wafer handling, In Proc. 27th Eur. Photovoltaic Sol. Energy Conf. Exhib., 2012, September. P. 1165–1170.
  56. Official website of ABB Robotics, RobotStudio. URL: http://new.abb.com/products/robotics/robotstudio.

 

References:
  1. International Federation of Robotics. URL: https://ifr.org/.
  2. World Robotics 2020 – Industrial Robots and Service Robots. URL: https://ifr.org/worldrobotics.
  3. Kumar S., Narayan Y., & Chouinard K. Effort reproduction accuracy in pinching, gripping, and lifting among industrial males. International Journal of Industrial Ergonomics. Vol. 20. No. 2. 1997. Р. 109–119.
  4. Fantoni G., Santochi M., Dini G., Tracht K., Scholz-Reiter B., Fleischer J., and Hansen H.N., Grasping devices and methods in automated production processes. CIRP Annals-Manufacturing Technology. Vol. 63. No. 2. 2014. Р. 679–701.
  5. Monkman G. J., Hesse S., Steinmann R., Schunk H. Robot grippers, Weinheim: John Wiley & Sons, KGaA, 2007, 452 p.
  6. Carbone G. Grasping in robotics, Springer-Verlag London, 2012, 468 p.
  7. Wolf A., Schunk H. A., Grippers in motion: the fascination of automated handling tasks, Carl Hanser Verlag GmbH Co KG, 2018.
  8. Afag, Gripper Moduls. URL: https://www.afag.com/en/handling/handling-systems.html.
  9. Festo, Catalogs. URL: https://www.festo.com/cat/ru-uk_ua/products_010800.
  10. IPR, Intelligente Peripherien fur Roboter GmbH, Catalogs. URL: https://en.iprworldwide.com/ category/grippers/.
  11. PHD Inc., Catalogs. URL: https://www.phdinc.com/products/category/?product=grippers.
  12. Zimmer Group Canada Inc., Catalogs. URL: https://www.zimmer-group.com/en/technologies-components/handling-technology/grippers.
  13. Schunk GmbH, Gripping Moduls. URL: https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/.
  14. SMC, Catalogs. URL: https://www.smcusa.com/products/actuators/grippers~20234.
  15. Li S., Stampfli J. J., Xu H. J., Malkin E., Diaz E. V., Rus D., & Wood R. J. A vacuum-driven origami “magic-ball” soft gripper, In 2019 International Conference on Robotics and Automation (ICRA). 2019. May. Р. 7401–7408.
  16. Makarov A. M., Mushkin O. V., & Lapikov M. A. Use of additive technologies to increase effectiveness of design and use of a vacuum gripping devices for flexible containers, In MATEC Web of Conferences. Vol. 224. 2018. DOI: 01082.
  17. Kim J. H., & Lee S. J. Configuration of noncontact grip system for carrying large flat sheets using vacuum air heads. Journal of Tribology. Vol. 137. No. 4. 2015.
  18. Morimoto K., Tada Y., Takashima H., Minamino K., Tahara R., & Konishi S. Design and characterization of high-performance contactless gripper using spiral air flows, In 2010 International Symposium on Micro-NanoMechatronics and Human Science. 2010. November. Р. 423–428.
  19. Zhao J., Wang C., & Li X. Gap flow with circumferential velocity in annular skirt of vortex gripper, Precision Engineering. Vol. 57. 2019. Р. 64–72.
  20. Wang C., Zhao J., & Li X. Effect of chamber diameter of vortex gripper on maximum suction force and flow field. Advances in Mechanical Engineering. Vol. 11. No. 3. 2019. DOI: 1687814019837401.
  21. Roy D. Development of novel magnetic grippers for use in unstructured robotic workspace, Robotics and Computer-Integrated Manufacturing. Vol. 35. 2015. Р. 16–41.
  22. Gawel A., Kamel M., Novkovic T., Widauer J., Schindler D., Von Altishofen B. P., & Nieto J. Aerial picking and delivery of magnetic objects with mavs, In 2017 IEEE international conference on robotics and automation (ICRA). 2017. May. Р. 5746– 5752.
  23. Chen C., & Chung T. A novel thermomagnetic gripper, In 2015 IEEE International Magnetics Conference (INTERMAG). 2015. May. Р. 1–11.
  24. Fiaz U. A., Abdelkader M., & Shamma J. S. An intelligent gripper design for autonomous aerial transport with passive magnetic grasping and dual-impulsive release, In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018. July. Р. 1027–1032.
  25. Liu D., Wang M., Fang N., Cong M., & Du Y. Design and tests of a non-contact Bernoulli gripper for rough-surfaced and fragile objects gripping, Assembly Automation. 2020. DOI: 10.1108/AA-10-2019-0171.
  26.  Savkiv V., Mykhailyshyn R., Duchon F. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum. No. 159. 2019. Р. 524–533, DOI: 10.1016/j.vacuum.2018.11.005.
  27. Shi K., & Li X. Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering. Vol. 52. 2018. Р. 323–331.
  28. Savkiv V., Mykhailyshyn R., Fendo O., Mykhailyshyn M. Orientation Modeling of Bernoulli Gripper Device with Off-Centered Masses of the Manipulating Object. Procedia Engineering. No. 187. 2017. Р. 264–271. DOI: 10.1016/j.proeng.2017.04.374.
  29. Mykhailyshyn R., Savkiv V., Duchon F., Mikhalishin M. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices. Journal of Electrical Engineering. Vol. 68. No. 6. 2017. Р. 496–502. DOI: 10.1515/jee-2017-0087.
  30. Mykhailyshyn R., Savkiv V., Mikhalishin M., Duchon F. Experimental Research of the Manipulatiom Process by the Objects Using Bernoulli Gripping Devices, In Young Scientists Forum on Applied Physics and Engineering. International IEEE Conference. 2017. Р. 8–11. DOI: 10.1109/YSF.2017.8126583.
  31. Seliger G., Stephan J., & Lange S. Non-rigid part handling by new gripping device, In Proc 8th Intl Conf Manuf Eng, ICME2000, Sydney, Australi. 2000. Р. 423–427.
  32. Buljo J. O., & Gjerstad T. B. Robotics and automation in seafood processing, In Robotics and Automation in the Food Industry. 2013. Р. 354–384.
  33. Brecher C., Kukla C., Schares R., Emonts M., Haus M. Form-Adaptive Gripping System for Light-Weight Productions, In 20th International Conference on Composite Materials. 2015. Р. 19–24.
  34. Hawkes E. W., Christensen D. L., Han A. K., Jiang H., & Cutkosky M. R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film, In 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015. May. Р. 2305 –2312.
  35. Förster F., Ballier F., Coutandin S., Defranceski A., Fleischer J. Manufacturing of textile preforms with an intelligent draping and gripping system. Procedia CIRP. No. 66. 2017. Р. 39–44.
  36. Savkiv V., Mykhailyshyn R., Duchon F., Fendo O. Justification of Design and Parameters of Bernoulli-Vacuum Gripping Device. International Journal of Advanced Robotic Systems. 2017. DOI: 1729881417741740.
  37. Mykhailyshyn R., Savkiv V., Diahovchenko I., Duchon F., Trembach R. Research of Energy Efficiency of Manipulation of Dimensional Objects With the Use of Pneumatic Gripping Devices. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering UKRCON-2019. 2019. Р. 527–532. DOI: 10.1109/UKRCON.2019.8879957.
  38. Jørgensen T. B., Krüger N., Pedersen M. M., Hansen N. W., Hansen B. R. Designing a Flexible Grasp Tool and Associated Grasping Strategies for Handling Multiple Meat Products in an Industrial Setting. International Journal of Mechanical Engineering and Robotics Research. Vol. 8. No. 2. 2019. Р. 220–227.
  39. Fleischer J., Förster F., & Gebhardt J. Sustainable manufacturing through energy efficient handling processes. Procedia CIRP. Vol. 40. 2016. Р. 574–579.
  40. Fleischer J., Ochs A., & Förster F. Gripping technology for carbon fibre material, In CIRP International conference on competitive manufacturing, Band: Green manufacturing for a blue planet. 2013. Р. 65–71.
  41. Lien T. K., & Davis P. G. G. A novel gripper for limp materials based on lateral Coanda ejectors. CIRP annals. Vol. 57. No. 1. 2008. Р. 33–36.
  42. Lovasz E. C., Mesaroş-Anghel V., Gruescu C. M., Moldovan C. E., & Ceccarelli M. General Algorithm for Computing the Theoretical Centering Precision of the Gripping Devices, In Advances in Mechanism Design II. 2017. Р. 15–21.
  43. Kyrylovych V. A., Cherepansʹka I. Yu., & Sazonov A. Yu. 2010, Adaptyvnistʹ skhvativ promyslovykh robotiv yak napryam pidvyshchennya efektyvnosti robotyzovanykh mekhanoskladalʹnykh tekhnolohiy. Bulletin of ZhSTU. Series «Technical Sciences». Vol. 1. No. 52. Р. 17–24. [Іn Ukrainian].
  44. Rong W., Liang S., Wang L., Zhang S., & Zhang W. Model and control of a compact long-travel accurate-manipulation platform. IEEE/ASME Transactions on Mechatronics. Vol. 22. No. 1. 2016. Р. 402–411.
  45. Wang J., Adib F., Knepper R., Katabi D., & Rus D. RF-compass: Robot object manipulation using RFIDs, In Proceedings of the 19th annual international conference on Mobile computing & networking. 2013. September. Р. 3–14.
  46. Sajjan S., Moore M., Pan M., Nagaraja G., Lee J., Zeng A., & Song S. Clear Grasp: 3D Shape Estimation of Transparent Objects for Manipulation. In 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. May. Р. 3634–3642.
  47. Aulin V. V., Pankov A. O., Zamota T. M., Lyashuk O. L., Hrynkiv A. V., Tykhyi A. A., Kuzyk A. V., Development of mechatronic module for the seeding control system. INMATEH – Agricultural Engineering. Vol. 59. No. 3. 2019. Р. 1–8.
  48. Aulin V., Hrynkiv A., Lyashuk O., Vovk Y., Lysenko S., Holub D., Zamota T., Pankov A., Sokol M., Ratynskyi V., Lavrentieva O. Increasing the functioning efficiency of the working warehouse of the «Uvk Ukraine» company transport and logistics center, Communications – Scientific Letters of the University of Zilina. Vol. 22. No. 2. 2020. Р. 3–14.
  49. Collet A., Berenson D., Srinivasa S. S., & Ferguson D. Object recognition and full pose registration from a single image for robotic manipulation. In 2009 IEEE International Conference on Robotics and Automation. 2009. May. Р. 48–55.
  50.  Savkiv V., Mykhailyshyn R., Duchon F., Mikhalishin M. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc, International Journal of Advanced Robotic Systems, 2018. DOI: 1729881418762670.
  51. Mykhailyshyn R., Savkiv V., Duchon F., Koloskov V., Diahovchenko I. Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system, 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). 2018. Р. 295–300. DOI: 10.1109/ieps.2018.8559586.
  52. Mykhailyshyn R., Savkiv V., Duchon F., Maruschak P., Prentkovskis O. Substantiation of Bernoulli Grippers Parameters at Non-Contact Transportation of Objects with a Displaced Center of Mass, 22nd International Scientific Conference Transport Means 2018. Klaipeda. 2018. Р. 1370–1375.
  53. Mykhailyshyn R., Savkiv V., Duchon F., Chovanec L. Experimental Investigations of the Dynamics of Contactless Transportation by Bernoulli Grippers, 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). 2020. Р. 97–100. DOI: 10.1109/ MSNMC50359.2020.9255521.
  54. Mykhailyshyn R., Savkiv V., Boyko I., Prada E., & Virgala, I. Substantiation of Parameters of Friction Elements of Bernoulli Grippers With a Cylindrical Nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME). Vol. 11. No. 2. 2021. Р. 17–39. DOI: 10.4018/ IJMMME.2021040102.
  55. Giesen T., Wertz R., Fischmann C., Kreck G., Govaerts J., Vaes J., & Verl A. Advanced production challenges for automated ultra-thin wafer handling, In Proc. 27th Eur. Photovoltaic Sol. Energy Conf. Exhib., 2012, September. P. 1165–1170.
  56. Official website of ABB Robotics, RobotStudio. URL: http://new.abb.com/products/robotics/robotstudio.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.