logo logo


Automated planning of the optimal movement trajectories of mobile mechatronic devices

НазваAutomated planning of the optimal movement trajectories of mobile mechatronic devices
Назва англійськоюAutomated planning of the optimal movement trajectories of mobile mechatronic devices
АвториValerii Kyrylovych, Petro Melnychuk, Lubomir Dimitrov, Ilona Kryzanivska
ПринадлежністьZhytomyrPolitechnic State University, Zhytomyr, Ukraine Sofia Technic University, Sofia, Republic of Bolgaria
Бібліографічний описAutomated planning of the optimal movement trajectories of mobile mechatronic devices / Valerii Kyrylovych, Petro Melnychuk, Lubomir Dimitrov, Ilona Kryzanivska // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 102. — No 2. — P. 64–77.
Bibliographic description:Kyrylovych V., Melnychuk P., Dimitrov L., Kryzanivska I. (2021) Automated planning of the optimal movement trajectories of mobile mechatronic devices. Scientific Journal of TNTU (Tern.), vol 102, no 2, pp. 64–77.
DOI: https://doi.org/10.33108/visnyk_tntu2021.02.064
УДК

621.865.8:62.505

Ключові слова

algorithm, trajectory, optimization, mobile mechatronic device, length, smoothness.

The compatible work is considered and the obtained results of the known algorithms generating unobstructed trajectories of different length and smoothness are investigated. Their operation is performed within the framework of the developed software product LSTr. The use of the analyzed set of these algorithms on the set of considered sections of the generated trajectories according to the obtained results allows a differentiated approach to the use of different algorithms on different sections of trajectories, determined by the accepted criteria of length and / or smoothness. The scientific novelty of the work and its practical significance in this area of research are determined.

ISSN:2522-4433
Перелік літератури
  1. IFR Press Conference 24th September 2020 Frankfurt. URL: https://ifr.org/downloads/press2018/ Presentation_WR_2020.pdf. (accessed 10.05.2021).
  2. Kyrylovych V. A. Systemnyjpidhid do robotyzovanyxmehanoskladal`nyhtehnologij yak ob'yektasyntezu.Sborny`ktrudov XIX mezhdunarodnojnauchno-tehnycheskojkonferencyy` “Mashy`nostroenie i` texnosferaXXI veka”. Doneczk. 2012. Vol. 2. P. 38–39. [In Ukrainian].
  3. Ioan A. Şucan. Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. Lydia E. Kavraki International Workshop on the Algorithmic Foundations of Robotics  URL: https://www.springerprofessional.de/en/kinodynamic-motion-planning-by-interior-exterior-cell-exploratio /3074572. (accessed 21.05.2021).
  4. Ioan A. Sucan. Task and Motion Planning for Mobile Manipulators. Diss.doct. of Ph. Rice University Houston, Texas, August 2011, 153 p.
  5. Open Motion Planning Library. A Primer,Kavraki Lab, Rice University, January 22, 2013,p. 25. URL: http://ompl.kavrakilab.org/OMPL_Primer.pdf.(accessed 30.05.2021).
  6. . A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking. URL: https://www.researchgate.net/publication/2473120_A_ Single-Query_Biirectional_Probabilistic_Roadmap_Planner_with_Lazy_Collision_Checking. (accessed 12.01.2021).
  7. Ricardo Sisnett, Gildardo Sánchez. Intelligent Motion Planning for Virtual Characters. URL: http://sisnett. tesisinteractive.com/PosterSGWS.pdf. (accessed 25.05.2021).
  8. RRT-Connect neoptimalnoeplanirovanietraektoriirobota. URL: http://robot-develop.org/archives/3835. (accessed 22.04.2021). [In Russian].
  9. Howie Choset, James Kuffner. Robotic Motion Planning. URL: https://www.google.com/search? q=9.+Robotic+Motion+Planning+%3A+Howie+Choset%2C+James+Kuffner&rlz=1C1PRFC_ukUA896UA896&oq=9.%09Robotic+Motion+Planning+%3A+Howie+Choset%2C+James+Kuffner&aqs=chrome..69i57.13477j0j4&sourceid=chrome&ie=UTF-8. (accessed 22.05.2021).
  10. Eric Heiden, Luigi Palmieri, Kai O. Arras, Gaurav S. Sukhatme and Sven Koenig. Experimental Comparison of Global Motion Planning Algorithms for Wheeled Mobile Robots. Available URL: https://arxiv.org/pdf/2003.03543.pdf. (accessed 20.05.2021).
  11. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki, Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents).The MIT Press., 2005, 550 p. (accessed 15.05.2021).
  12. Mykhailyshyn R. I., Prots’ Y. I., Savkiv V. B. (2016) Optimizationofbernoulligrippingdevice’sorientationundertheprocessofmanipulationsalongdirecttrajectory. ScientificJournalof TNTU (Tern.), vol. 81, no 1, pp. 107-117.(accessed 13.05.2021).
  13. TaoCheng,UdayMantripragada,JochenTeizer,Patricio A. Vela. (2012). AutomatedTrajectoryandPathPlanningAnalysisBasedonUltraWidebandData. URL: https://www.researchgate.net/publication/264626619_Automated_Trajectory_and_Path_Planning_Analysis_Based_on_Ultra_Wideband_Data. (accessed19.05.2021).
  14. Duchoň, F., Huňady, D., Dekan, M., &Babinec, A. (2013). Optimal navigation for mobile robot in known environment. Applied Mechanics and Materials, vol. 282, pp. 33-39.
  15. Kohrt, C., Stamp, R., Pipe, A. G., Kiely, J., &Schiedermeier, G. (2013). An online robot trajectory planning and programming support system for industrial use//  Roboticsand Computer-Integrated Manufacturing, vol. 29(1), pp. 71-79.
  16. Palamar M., Poikhalo A., Strembitskyi M., Strembitskyi V. (2016) Methodofconstructingthenavigationsystemofautonomousmobilerobotsusingfuzzylogicelements. ScientificJournalof TNTU (Tern.), no 4 (84), pp. 93-98.
  17. Sapietová, A., Saga, M., Kuric, I., &Václav, Š. (2018). Application of optimization algorithms for robot systems designing. Internationaljournalofadvancedroboticsystems, 15(1), 1729881417754152.Available at: https://journals.sagepub.com/doi/pdf/10.1177/1729881417754152. (accessed 15.05.2021).
  18. Carabin, G., Wehrle, E., &Vidoni, R. (2017). A review on energy-saving optimization methods for robotic and automatic systems. Robotics, 6(4), 39. URL: https://www.mdpi.com/2218-6581/6/4/39/htm. (accessed 15.05.2021).
  19. Boscariol, P., &Richiedei, D. (2019). Trajectory design for energy savings in redundant robotic cells. Robotics, 8(1), 15. URL: https://www.mdpi.com/2218-6581/8/1/15/htm. (accessed 17.05.2021).
  20. Fang, Y., Hu, J., Liu, W., Shao, Q., Qi, J., &Peng, Y. (2019). Smooth and time-optimal S-curve trajectory planning for automated robots and machines. MechanismandMachineTheory, 137, pp; 127–153.

 

References:
  1. IFR Press Conference 24th September 2020 Frankfurt. URL: https://ifr.org/downloads/press2018/ Presentation_WR_2020.pdf. (accessed 10.05.2021).
  2. Kyrylovych V. A. Systemnyjpidhid do robotyzovanyxmehanoskladal`nyhtehnologij yak ob'yektasyntezu.Sborny`ktrudov XIX mezhdunarodnojnauchno-tehnycheskojkonferencyy` “Mashy`nostroenie i` texnosferaXXI veka”. Doneczk. 2012. Vol. 2. P. 38–39. [In Ukrainian].
  3. Ioan A. Şucan. Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. Lydia E. Kavraki International Workshop on the Algorithmic Foundations of Robotics  URL: https://www.springerprofessional.de/en/kinodynamic-motion-planning-by-interior-exterior-cell-exploratio /3074572. (accessed 21.05.2021).
  4. Ioan A. Sucan. Task and Motion Planning for Mobile Manipulators. Diss.doct. of Ph. Rice University Houston, Texas, August 2011, 153 p.
  5. Open Motion Planning Library. A Primer,Kavraki Lab, Rice University, January 22, 2013,p. 25. URL: http://ompl.kavrakilab.org/OMPL_Primer.pdf.(accessed 30.05.2021).
  6. . A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking. URL: https://www.researchgate.net/publication/2473120_A_ Single-Query_Biirectional_Probabilistic_Roadmap_Planner_with_Lazy_Collision_Checking. (accessed 12.01.2021).
  7. Ricardo Sisnett, Gildardo Sánchez. Intelligent Motion Planning for Virtual Characters. URL: http://sisnett. tesisinteractive.com/PosterSGWS.pdf. (accessed 25.05.2021).
  8. RRT-Connect neoptimalnoeplanirovanietraektoriirobota. URL: http://robot-develop.org/archives/3835. (accessed 22.04.2021). [In Russian].
  9. Howie Choset, James Kuffner. Robotic Motion Planning. URL: https://www.google.com/search? q=9.+Robotic+Motion+Planning+%3A+Howie+Choset%2C+James+Kuffner&rlz=1C1PRFC_ukUA896UA896&oq=9.%09Robotic+Motion+Planning+%3A+Howie+Choset%2C+James+Kuffner&aqs=chrome..69i57.13477j0j4&sourceid=chrome&ie=UTF-8. (accessed 22.05.2021).
  10. Eric Heiden, Luigi Palmieri, Kai O. Arras, Gaurav S. Sukhatme and Sven Koenig. Experimental Comparison of Global Motion Planning Algorithms for Wheeled Mobile Robots. Available URL: https://arxiv.org/pdf/2003.03543.pdf. (accessed 20.05.2021).
  11. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki, Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents).The MIT Press., 2005, 550 p. (accessed 15.05.2021).
  12. Mykhailyshyn R. I., Prots’ Y. I., Savkiv V. B. (2016) Optimizationofbernoulligrippingdevice’sorientationundertheprocessofmanipulationsalongdirecttrajectory. ScientificJournalof TNTU (Tern.), vol. 81, no 1, pp. 107-117.(accessed 13.05.2021).
  13. TaoCheng,UdayMantripragada,JochenTeizer,Patricio A. Vela. (2012). AutomatedTrajectoryandPathPlanningAnalysisBasedonUltraWidebandData. URL: https://www.researchgate.net/publication/264626619_Automated_Trajectory_and_Path_Planning_Analysis_Based_on_Ultra_Wideband_Data. (accessed19.05.2021).
  14. Duchoň, F., Huňady, D., Dekan, M., &Babinec, A. (2013). Optimal navigation for mobile robot in known environment. Applied Mechanics and Materials, vol. 282, pp. 33-39.
  15. Kohrt, C., Stamp, R., Pipe, A. G., Kiely, J., &Schiedermeier, G. (2013). An online robot trajectory planning and programming support system for industrial use//  Roboticsand Computer-Integrated Manufacturing, vol. 29(1), pp. 71-79.
  16. Palamar M., Poikhalo A., Strembitskyi M., Strembitskyi V. (2016) Methodofconstructingthenavigationsystemofautonomousmobilerobotsusingfuzzylogicelements. ScientificJournalof TNTU (Tern.), no 4 (84), pp. 93-98.
  17. Sapietová, A., Saga, M., Kuric, I., &Václav, Š. (2018). Application of optimization algorithms for robot systems designing. Internationaljournalofadvancedroboticsystems, 15(1), 1729881417754152.Available at: https://journals.sagepub.com/doi/pdf/10.1177/1729881417754152. (accessed 15.05.2021).
  18. Carabin, G., Wehrle, E., &Vidoni, R. (2017). A review on energy-saving optimization methods for robotic and automatic systems. Robotics, 6(4), 39. URL: https://www.mdpi.com/2218-6581/6/4/39/htm. (accessed 15.05.2021).
  19. Boscariol, P., &Richiedei, D. (2019). Trajectory design for energy savings in redundant robotic cells. Robotics, 8(1), 15. URL: https://www.mdpi.com/2218-6581/8/1/15/htm. (accessed 17.05.2021).
  20. Fang, Y., Hu, J., Liu, W., Shao, Q., Qi, J., &Peng, Y. (2019). Smooth and time-optimal S-curve trajectory planning for automated robots and machines. MechanismandMachineTheory, 137, pp; 127–153.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.